SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli

This is a SetFit model that can be used for Text Classification. This SetFit model uses MoritzLaurer/mDeBERTa-v3-base-mnli-xnli as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
4
  • 'Yeh rahin wo steps jisse aap apni payment kar sakte hain.'
  • 'Kya aap mujhe yeh batane ka tarika thoda aasan kar sakte hain?'
  • 'Is option ke madhyam se aap apni queries kaise solve kar sakte hain, jaan lijiye.'
16
  • 'Aapke feedback ko humne dhyan mein rakha hai.'
  • 'Yeh galti humare systems ki wajah se hui hai.'
  • 'Mujhe is samasya ko suljhane mein zyada samay lena nahi chahiye tha.'
8
  • 'Main aapko pareshan karne ke liye maafi chahta hoon.'
  • 'Humein is samasya ke liye maafi chahiye.'
  • 'Mere kaam se agar aapko takleef hui ho, toh mujhe maaf kar dijiye.'
13
  • 'Mujhe yeh clarify karne ki zarurat hai ki agla step kya hai?'
  • 'Mujhe pata karna hai ki maine jo complaint ki thi uska kya hua.'
  • 'Mujhe bataye ki pehle kitne payments honge iss plan ke liye.'
15
  • 'Yeh features sahi hai, lekin kuch aur additional functionalities honi chahiye.'
  • 'Product ke size ki jankari hamesha saaf honi chahiye.'
  • 'Main chahunga ki online form aur simple ho.'
12
  • 'Mujhe product ke sath kuch samasya hai.'
  • 'Mera phone charging nahi ho raha.'
  • 'Mujhe courier service mein dikkat hai, report karna hai.'
11
  • 'Mujhe samajh nahi aa raha, is offer mein koi chhupi shartein toh nahi hai?'
  • 'Kis tarah se main feedback de sakta hoon?'
  • 'Kya koi referral program hai jo mujhe join karna chahiye?'
2
  • 'Item ke sath saathi accessories nahi mil rahe hain.'
  • 'Aap logon ne jo samay liya, wo bilkul zyada tha.'
  • 'Meri order delivery mein bahut der ho gayi hai.'
18
  • 'Mujhe yeh bilkul pasand nahi hai ki meri baat ignore ki gayi.'
  • 'Kam ke liye mera dosto ka support bahut sukhdayak hai.'
  • 'Aaj ka din kaafi udaas beete raha hai.'
14
  • 'Kya main kal ki delivery ko agle hafte reschedule kar sakta/sakti hoon?'
  • 'Mujhe refund ke liye kya documents chahiye?'
  • 'Kya main appointment ko dobara set kar sakta/sakti hoon?'
7
  • 'Main aapko dhanyavad dena chahta hoon, aapne meri madad ki.'
  • 'Aapne jo kiya, uske liye aapko sabse pehle prashansha milni chahiye.'
  • 'Aapka samay dene ke liye abhaar.'
3
  • 'Mujhe kisi event ke tickets ka status check karna hai.'
  • 'Kya aap mujhe customer support number de sakte hain?'
  • 'Main apne account ka balance kaise check kar sakta/sakti hoon?'
5
  • 'Alvida, tumhara din acha rahe!'
  • 'Hello! Aaj aap kaise hain?'
  • 'Swagat hai! Kya main aapki kuch madad kar sakta hoon?'
0
  • 'Mujhe kuch samajh nahi aa raha hai, kya mujhe thoda aur samjha sakte hain?'
  • 'Agar main aisa karoon, to kya kuch badal jaayega? Main sure nahi hoon.'
  • 'Yeh product ki warranty ki details clear nahi hain.'
6
  • 'Chalo, alvida bolte hain!'
  • 'Phir se baat karte hain!'
  • 'Adieu, aapka din shubh ho!'
17
  • 'Mere account mein login karne mein dikkat aa rahi hai, madad karein.'
  • 'Mujhe apne account mein login karne mein madad chahiye.'
  • 'Kya aap mujhe terms and conditions ke details de sakte hain?'
10
  • 'Main aapki baat se sehmat hoon.'
  • 'Mujhe yeh batayein ki meri booking sahi hai na?'
9
  • 'Kya aap mujhe yeh concept aur clear kar sakte hain?'
  • 'Mujhe yeh samajhne mein dikkat ho rahi hai, kya aap vyakhya de sakte hain?'
1
  • 'Aaj dosto ke sath waqt bitana bahut acha laga.'
  • 'Aaj baarish me bheegna bahut refreshing tha, mujhe yeh moment pasand aaya.'
  • 'Aapka support bahut madadgar raha.'

Evaluation

Metrics

Label Accuracy
all 0.32

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/FT-mDeBERTa-v3-base-mnli-xnli")
# Run inference
preds = model("Kya aap mujhe is event ki timing bata sakte hain?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.76 15
Label Training Sample Count
0 6
1 3
2 3
3 5
4 7
5 3
6 6
7 8
8 6
9 2
10 2
11 5
12 6
13 5
14 9
15 9
16 9
17 3
18 3

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0017 1 0.2335 -
0.0853 50 0.2514 -
0.1706 100 0.1619 -
0.2560 150 0.1124 -
0.3413 200 0.078 -
0.4266 250 0.0623 -
0.5119 300 0.0576 -
0.5973 350 0.0421 -
0.6826 400 0.0391 -
0.7679 450 0.0386 -
0.8532 500 0.0302 -
0.9386 550 0.0245 -

Framework Versions

  • Python: 3.10.16
  • SetFit: 1.1.1
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cpu
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
11
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rbojja/FT-mDeBERTa-v3-base-mnli-xnli

Finetuned
(11)
this model

Evaluation results