File size: 1,568 Bytes
61afd96
60bb421
 
61afd96
60bb421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
language: fr
license: cc-by-4.0
---

# Cour de Cassation *titrage* prediction model (transformer-base)

Model for the automatic prediction of *titrages* (keyword sequence) from *sommaires* (synthesis of legal cases). The models are described in [this paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf). If you use this model, please cite our research paper (see [below](#cite)).

## Model description



### Intended uses & limitations



### How to use


### Limitations and bias



## Training data



## Training procedure

### Preprocessing


### Training

### Evaluation results

Coming soon

## BibTex entry and citation info
<a name="cite"></a>

If you use this work, please cite the following article:

Thibault Charmet, Inès Cherichi, Matthieu Allain, Urszula Czerwinska, Amaury Fouret, Benoît Sagot and Rachel Bawden, 2022. **Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings**. In Proceedings of the 13th Language Resources and Evaluation Conference, Marseille, France.

```
@inproceedings{charmet-et-al-2022-complex,
  tite = {Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings},
  author = {Charmet, Thibault and Cherichi, Inès and Allain, Matthieu and Czerwinska, Urszula and Fouret, Amaury, and Sagot, Benoît and Bawden, Rachel},
  booktitle = {Proceedings of the 13th Language Resources and Evaluation Conference},
  year = {2022},
  address = {Marseille, France}
```