rbawden commited on
Commit
60bb421
·
1 Parent(s): d1188c3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -1,3 +1,54 @@
1
  ---
2
- license: cc-by-sa-4.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: fr
3
+ license: cc-by-4.0
4
  ---
5
+
6
+ # Cour de Cassation *titrage* prediction model (transformer-base)
7
+
8
+ Model for the automatic prediction of *titrages* (keyword sequence) from *sommaires* (synthesis of legal cases). The models are described in [this paper](https://hal.inria.fr/hal-03663110/file/LREC_2022___CCass_Inria-camera-ready.pdf). If you use this model, please cite our research paper (see [below](#cite)).
9
+
10
+ ## Model description
11
+
12
+
13
+
14
+ ### Intended uses & limitations
15
+
16
+
17
+
18
+ ### How to use
19
+
20
+
21
+ ### Limitations and bias
22
+
23
+
24
+
25
+ ## Training data
26
+
27
+
28
+
29
+ ## Training procedure
30
+
31
+ ### Preprocessing
32
+
33
+
34
+ ### Training
35
+
36
+ ### Evaluation results
37
+
38
+ Coming soon
39
+
40
+ ## BibTex entry and citation info
41
+ <a name="cite"></a>
42
+
43
+ If you use this work, please cite the following article:
44
+
45
+ Thibault Charmet, Inès Cherichi, Matthieu Allain, Urszula Czerwinska, Amaury Fouret, Benoît Sagot and Rachel Bawden, 2022. **Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings**. In Proceedings of the 13th Language Resources and Evaluation Conference, Marseille, France.
46
+
47
+ ```
48
+ @inproceedings{charmet-et-al-2022-complex,
49
+ tite = {Complex Labelling and Similarity Prediction in Legal Texts: Automatic Analysis of France’s Court of Cassation Rulings},
50
+ author = {Charmet, Thibault and Cherichi, Inès and Allain, Matthieu and Czerwinska, Urszula and Fouret, Amaury, and Sagot, Benoît and Bawden, Rachel},
51
+ booktitle = {Proceedings of the 13th Language Resources and Evaluation Conference},
52
+ year = {2022},
53
+ address = {Marseille, France}
54
+ ```