xml-roberta-large-finetuned-ner

Este es modelo resultado de un finetuning de FacebookAI/xlm-roberta-large-finetuned-conll03-english sobre el conll2002 dataset. Los siguientes son los resultados sobre el conjunto de evaluación:

  • Loss: 0.1364
  • Precision: 0.8806
  • Recall: 0.8897
  • F1: 0.8851
  • Accuracy: 0.9806

Model description

Este es el modelo más grande de roberta FacebookAI/xlm-roberta-large-finetuned-conll03-english- Este modelo fue ajustado usando el framework Kaggle [https://www.kaggle.com/settings]. Para realizar el preentrenamiento del modelo se tuvo que crear un directorio temporal en Kaggle con el fin de almacenar de manera temoporal el modelo que pesa alrededor de 35 Gz.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0743 1.0 2081 0.1131 0.8385 0.8587 0.8485 0.9771
0.049 2.0 4162 0.1429 0.8492 0.8564 0.8528 0.9756
0.031 3.0 6243 0.1298 0.8758 0.8817 0.8787 0.9800
0.0185 4.0 8324 0.1279 0.8827 0.8890 0.8859 0.9808
0.0125 5.0 10405 0.1364 0.8806 0.8897 0.8851 0.9806

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
62
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for raulgdp/xml-roberta-large-finetuned-ner

Finetuned
(5)
this model
Finetunes
7 models

Dataset used to train raulgdp/xml-roberta-large-finetuned-ner

Evaluation results