roberta-large-ner-qlorafinetune-runs-colab
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.0688
- Precision: 0.9390
- Recall: 0.9598
- F1: 0.9493
- Accuracy: 0.9821
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1300
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.4626 | 0.0654 | 20 | 0.9421 | 0.4829 | 0.1165 | 0.1877 | 0.7544 |
0.7547 | 0.1307 | 40 | 0.3993 | 0.7557 | 0.6814 | 0.7166 | 0.8940 |
0.4022 | 0.1961 | 60 | 0.2119 | 0.8276 | 0.8158 | 0.8217 | 0.9396 |
0.2732 | 0.2614 | 80 | 0.1631 | 0.8250 | 0.8746 | 0.8491 | 0.9512 |
0.2083 | 0.3268 | 100 | 0.1423 | 0.8591 | 0.9037 | 0.8808 | 0.9576 |
0.2216 | 0.3922 | 120 | 0.1392 | 0.8562 | 0.9147 | 0.8845 | 0.9572 |
0.1787 | 0.4575 | 140 | 0.1114 | 0.8940 | 0.9173 | 0.9055 | 0.9664 |
0.1642 | 0.5229 | 160 | 0.1191 | 0.8840 | 0.9270 | 0.9050 | 0.9657 |
0.1557 | 0.5882 | 180 | 0.1089 | 0.8825 | 0.9284 | 0.9049 | 0.9665 |
0.1406 | 0.6536 | 200 | 0.0982 | 0.8967 | 0.9279 | 0.9121 | 0.9700 |
0.1359 | 0.7190 | 220 | 0.0879 | 0.9182 | 0.9269 | 0.9225 | 0.9733 |
0.1272 | 0.7843 | 240 | 0.1047 | 0.8940 | 0.9506 | 0.9214 | 0.9697 |
0.1157 | 0.8497 | 260 | 0.0985 | 0.9198 | 0.9266 | 0.9232 | 0.9719 |
0.1191 | 0.9150 | 280 | 0.1166 | 0.8827 | 0.9427 | 0.9117 | 0.9656 |
0.1298 | 0.9804 | 300 | 0.0878 | 0.9211 | 0.9315 | 0.9263 | 0.9736 |
0.1107 | 1.0458 | 320 | 0.0834 | 0.9205 | 0.9512 | 0.9356 | 0.9762 |
0.0942 | 1.1111 | 340 | 0.0874 | 0.9097 | 0.9574 | 0.9329 | 0.9745 |
0.0979 | 1.1765 | 360 | 0.0771 | 0.9259 | 0.9518 | 0.9387 | 0.9779 |
0.0971 | 1.2418 | 380 | 0.0814 | 0.9280 | 0.9478 | 0.9378 | 0.9781 |
0.1053 | 1.3072 | 400 | 0.0804 | 0.9214 | 0.9399 | 0.9306 | 0.9761 |
0.1075 | 1.3725 | 420 | 0.0835 | 0.9083 | 0.9369 | 0.9224 | 0.9738 |
0.0893 | 1.4379 | 440 | 0.0773 | 0.9329 | 0.9469 | 0.9398 | 0.9784 |
0.09 | 1.5033 | 460 | 0.0737 | 0.9316 | 0.9522 | 0.9418 | 0.9787 |
0.0947 | 1.5686 | 480 | 0.0787 | 0.9141 | 0.9549 | 0.9340 | 0.9763 |
0.0907 | 1.6340 | 500 | 0.0813 | 0.9179 | 0.9522 | 0.9347 | 0.9770 |
0.0752 | 1.6993 | 520 | 0.0802 | 0.9130 | 0.9575 | 0.9347 | 0.9772 |
0.0801 | 1.7647 | 540 | 0.0703 | 0.9302 | 0.9530 | 0.9415 | 0.9797 |
0.092 | 1.8301 | 560 | 0.0739 | 0.9301 | 0.9513 | 0.9406 | 0.9785 |
0.0862 | 1.8954 | 580 | 0.0899 | 0.9034 | 0.9526 | 0.9274 | 0.9735 |
0.0869 | 1.9608 | 600 | 0.0782 | 0.9164 | 0.9510 | 0.9334 | 0.9765 |
0.0713 | 2.0261 | 620 | 0.0771 | 0.9225 | 0.9579 | 0.9399 | 0.9785 |
0.0635 | 2.0915 | 640 | 0.0729 | 0.9356 | 0.9524 | 0.9439 | 0.9797 |
0.0527 | 2.1569 | 660 | 0.0764 | 0.9088 | 0.9475 | 0.9277 | 0.9765 |
0.0738 | 2.2222 | 680 | 0.0747 | 0.9233 | 0.9576 | 0.9401 | 0.9783 |
0.0628 | 2.2876 | 700 | 0.0751 | 0.9334 | 0.9589 | 0.9460 | 0.9801 |
0.0574 | 2.3529 | 720 | 0.0713 | 0.9354 | 0.9580 | 0.9465 | 0.9807 |
0.0628 | 2.4183 | 740 | 0.0700 | 0.9347 | 0.9540 | 0.9443 | 0.9809 |
0.0771 | 2.4837 | 760 | 0.0707 | 0.9326 | 0.9607 | 0.9465 | 0.9811 |
0.068 | 2.5490 | 780 | 0.0753 | 0.9318 | 0.9648 | 0.9480 | 0.9807 |
0.0653 | 2.6144 | 800 | 0.0680 | 0.9400 | 0.9583 | 0.9491 | 0.9820 |
0.0567 | 2.6797 | 820 | 0.0762 | 0.9327 | 0.9540 | 0.9433 | 0.9791 |
0.066 | 2.7451 | 840 | 0.0719 | 0.9297 | 0.9570 | 0.9431 | 0.9805 |
0.0576 | 2.8105 | 860 | 0.0723 | 0.9360 | 0.9597 | 0.9477 | 0.9808 |
0.0608 | 2.8758 | 880 | 0.0744 | 0.9309 | 0.9566 | 0.9436 | 0.9791 |
0.0521 | 2.9412 | 900 | 0.0679 | 0.9355 | 0.9599 | 0.9475 | 0.9814 |
0.051 | 3.0065 | 920 | 0.0688 | 0.9373 | 0.9594 | 0.9482 | 0.9818 |
0.0444 | 3.0719 | 940 | 0.0723 | 0.9335 | 0.9607 | 0.9469 | 0.9814 |
0.0468 | 3.1373 | 960 | 0.0767 | 0.9246 | 0.9554 | 0.9397 | 0.9787 |
0.0433 | 3.2026 | 980 | 0.0681 | 0.9376 | 0.9591 | 0.9482 | 0.9819 |
0.0468 | 3.2680 | 1000 | 0.0722 | 0.9318 | 0.9589 | 0.9452 | 0.9808 |
0.0496 | 3.3333 | 1020 | 0.0708 | 0.9341 | 0.9496 | 0.9418 | 0.9803 |
0.0473 | 3.3987 | 1040 | 0.0699 | 0.9315 | 0.9666 | 0.9487 | 0.9819 |
0.0534 | 3.4641 | 1060 | 0.0675 | 0.9368 | 0.9569 | 0.9468 | 0.9819 |
0.0421 | 3.5294 | 1080 | 0.0698 | 0.9322 | 0.9564 | 0.9442 | 0.9809 |
0.0444 | 3.5948 | 1100 | 0.0715 | 0.9303 | 0.9539 | 0.9420 | 0.9799 |
0.0366 | 3.6601 | 1120 | 0.0671 | 0.9382 | 0.9615 | 0.9497 | 0.9823 |
0.0505 | 3.7255 | 1140 | 0.0687 | 0.9376 | 0.9554 | 0.9464 | 0.9814 |
0.0431 | 3.7908 | 1160 | 0.0698 | 0.9338 | 0.9594 | 0.9465 | 0.9813 |
0.0519 | 3.8562 | 1180 | 0.0696 | 0.9378 | 0.9604 | 0.9490 | 0.9820 |
0.0471 | 3.9216 | 1200 | 0.0712 | 0.9380 | 0.9599 | 0.9488 | 0.9817 |
0.0544 | 3.9869 | 1220 | 0.0688 | 0.9407 | 0.9588 | 0.9497 | 0.9819 |
0.0392 | 4.0523 | 1240 | 0.0688 | 0.9389 | 0.9599 | 0.9493 | 0.9822 |
0.0303 | 4.1176 | 1260 | 0.0698 | 0.9376 | 0.9601 | 0.9487 | 0.9817 |
0.0383 | 4.1830 | 1280 | 0.0689 | 0.9393 | 0.9605 | 0.9498 | 0.9821 |
0.0389 | 4.2484 | 1300 | 0.0688 | 0.9390 | 0.9598 | 0.9493 | 0.9821 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for raulgdp/roberta-large-ner-qlorafinetune-runs-colab
Base model
FacebookAI/xlm-roberta-large