raulgdp's picture
End of training
e53cb47 verified
|
raw
history blame
2.21 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.6434803981811479
          - name: Recall
            type: recall
            value: 0.6306913996627319
          - name: F1
            type: f1
            value: 0.6370217166494313
          - name: Accuracy
            type: accuracy
            value: 0.9318683268102846

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2428
  • Precision: 0.6435
  • Recall: 0.6307
  • F1: 0.6370
  • Accuracy: 0.9319

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3631 1.0 521 0.2718 0.5847 0.5858 0.5852 0.9219
0.2056 2.0 1042 0.2428 0.6435 0.6307 0.6370 0.9319

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1