ratish/DBERT_MAKE_NewData_v2

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.2959
  • Validation Loss: 0.4909
  • Train Accuracy: 0.8545
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 360, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
2.3353 1.9477 0.6545 0
1.7645 1.4417 0.6545 1
1.3097 1.1007 0.8364 2
0.9860 0.8667 0.8364 3
0.7850 0.7599 0.8364 4
0.6603 0.6913 0.8545 5
0.5657 0.6254 0.8545 6
0.5007 0.5763 0.8545 7
0.4480 0.5492 0.8364 8
0.4014 0.5328 0.8545 9
0.3611 0.5035 0.8364 10
0.3295 0.5296 0.8545 11
0.3177 0.4930 0.8545 12
0.3103 0.4904 0.8545 13
0.2959 0.4909 0.8545 14

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support