GPT-2 PyTorch
The original GPT-2 model weights from https://openaipublic.blob.core.windows.net/gpt-2/models converted from TensorFlow to PyTorch state dicts and PyTorch safetensors files.
Usage
The section below explain how the model weights can be used.
Setup
Install the llms-from-scratch PyPI package:
pip install llms_from_scratch
Or copy the and paste the GPTModel
class and dependencies from GitHub.
Loading the model weights
The following shows how to load the weights into the 355M parameter model:
import torch
from llms_from_scratch.ch04 import GPTModel
GPT_CONFIG_BASE = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Original context length
"emb_dim": 768, # Embedding dimension
"n_heads": 12, # Number of attention heads
"n_layers": 12, # Number of layers
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
model_configs = {
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}
model_name = "gpt2-medium (355M)" # Example model name
NEW_CONFIG = GPT_CONFIG_BASE.copy()
NEW_CONFIG.update(model_configs[model_name])
model = GPTModel(NEW_CONFIG)
# Option A: state dict
model.load_state_dict(torch.load("gpt2-medium-355M.pth", weights_only=True));
model.eval();
# Option B: safetensors
# from safetensors.torch import load_file
# model.load_state_dict(load_file("gpt2-medium-355M.safetensors"))
model.eval();
To use the other models, simply replace the model names:
model_name = "gpt2-medium (355M)"
...
model.load_state_dict(torch.load("gpt2-medium-355M.pth"))
# or
model.load_state_dict(load_file("gpt2-medium-355M.safetensors"))
with the desired model names. For example:
model_name = "gpt2-small (124M)"
...
model.load_state_dict(torch.load("gpt2-small-124M.pth"))
# or
model.load_state_dict(load_file("gpt2-small-124M.safetensors"))
Generating text
The following showcases how the model can then be used to generate text.
import tiktoken
from llms_from_scratch.ch04 import generate_text_simple
tokenizer = tiktoken.get_encoding("gpt2")
prompt = "Ever effort moves"
enc_prompt = tokenizer.encode(prompt)
enc_prompt = torch.tensor([enc_prompt])
token_ids = generate_text_simple(
model=model,
idx=enc_prompt,
max_new_tokens=25,
context_size=NEW_CONFIG["context_length"]
)
output = tokenizer.decode(token_ids.squeeze().tolist())
print(output)
Ever effort moves the needle.
The first step is to understand the difference between a "good" and a "bad" goal.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.