|
--- |
|
license: apache-2.0 |
|
tags: |
|
- image-classification |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
- rajistics/indian_food_images |
|
metrics: |
|
- accuracy |
|
widget: |
|
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/003.jpg |
|
example_title: Fried Rice |
|
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/126.jpg |
|
example_title: Paani Puri |
|
- src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/401.jpg |
|
example_title: Chapathi |
|
model-index: |
|
- name: finetuned-indian-food |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: indian_food_images |
|
type: imagefolder |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9521785334750266 |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
name: rajistics/indian_food_images |
|
type: rajistics/indian_food_images |
|
config: rajistics--indian_food_images |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8257173219978746 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 0.8391547623590003 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 0.8257173219978746 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 0.8437849242516663 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 0.8199909093335551 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 0.8257173219978746 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 0.8257173219978746 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 0.8207881196755944 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 0.8257173219978746 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 0.8256340007731109 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.6241679787635803 |
|
verified: true |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetuned-indian-food |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2139 |
|
- Accuracy: 0.9522 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.0846 | 0.3 | 100 | 0.9561 | 0.8555 | |
|
| 0.7894 | 0.6 | 200 | 0.5871 | 0.8927 | |
|
| 0.6233 | 0.9 | 300 | 0.4447 | 0.9107 | |
|
| 0.3619 | 1.2 | 400 | 0.4355 | 0.8937 | |
|
| 0.34 | 1.5 | 500 | 0.3712 | 0.9118 | |
|
| 0.3413 | 1.8 | 600 | 0.4088 | 0.8916 | |
|
| 0.3619 | 2.1 | 700 | 0.3741 | 0.9044 | |
|
| 0.2135 | 2.4 | 800 | 0.3286 | 0.9160 | |
|
| 0.2166 | 2.7 | 900 | 0.2758 | 0.9416 | |
|
| 0.1557 | 3.0 | 1000 | 0.2679 | 0.9330 | |
|
| 0.1115 | 3.3 | 1100 | 0.2529 | 0.9362 | |
|
| 0.1571 | 3.6 | 1200 | 0.2360 | 0.9469 | |
|
| 0.1079 | 3.9 | 1300 | 0.2139 | 0.9522 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|