whisper-tiny-6e-5 / README.md
raiyan007's picture
End of training
f30c645 verified
metadata
language:
  - bn
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper tiny bn - Raiyan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice_13.0
          type: mozilla-foundation/common_voice_13_0
          config: bn
          split: None
          args: 'config: bn, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 44.349095570431565

Whisper tiny bn - Raiyan

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice_13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1734
  • Wer: 44.3491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 24
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Wer
0.261 1.0661 500 0.2417 63.3469
0.1926 2.1322 1000 0.1941 54.3987
0.1367 3.1983 1500 0.1729 49.3116
0.0994 4.2644 2000 0.1622 46.2280
0.0564 5.3305 2500 0.1669 45.0802
0.0394 6.3966 3000 0.1734 44.3491

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1