File size: 6,006 Bytes
7de325f 1a38ce3 5d98e68 bebd162 5d98e68 0316a09 219e9b2 5d98e68 ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 1daad7c ef59b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
license: other
pipeline_tag: text-classification
widget:
- text: >-
Sono quattro le persone indagate dalla Procura di Roma per le minacce via mail al ministro della Salute. Tra ottobre del 2020 e il gennaio del 2021 avrebbero inviato al ministro dei messaggi dal contenuto gravemente minaccioso. Al ministro la solidarietà di tutto il mondo politico e a causa della pandemia si assottigliano i redditi delle famiglie italiane. Aumenta anche la pressione fiscale. Lo rileva l'Istat.
- text: >-
Le terapie intensive hanno superato la soglia del 30% di riempimento. La
lotta al virus e anche lotta alle fake news, prosegue la collaborazione tra
ministero della Salute e Twitter quando si cercano notizie sul Covid del
Social rimanda le pagine del ministero, includendo anche le ultime
informazioni sui vaccini. COVID-19 è stato l'hashtag più twittato a livello
globale nel 2020. La poltrona negata da Erdogan ad Ursula von der Leyen, lo
avete sentito? Fa ancora discutere dentro e fuori dal Parlamento europeo:
Marco Clementi.
- text: >-
I bambini che soffrono di autismo hanno gli stessi diritti di tutti gli
altri bambini sottolinea garante per l'infanzia, occorre dunque fare rete
tra famiglia, scuola, pediatri e servizi sociali.
- text: Domani mattina alle 705 su Rai Uno torna la nostra rubrica di approfondimento 7 giorni. L'anticipazione nel servizio.
- text: In un'appassionante sfida musicale, il pubblico assisterà alle incredibili trasformazioni degli artisti in gara, pronti a esibirsi rigorosamente dal vivo e a calarsi nei panni delle più grandi star della musica. Per partecipare con un tuo video o per consultare il regolamento vai a https://www.rai.it/regolamenti/
metrics:
- accuracy
- precision
- recall
language:
- it
---
# Model Card for raicrits/newsClassifier_v1
<!-- Provide a quick summary of what the model is/does. -->
This model analyses the input text and provides the class the text belongs to among the follofing ones:
0"sport"
1"giustizia-criminalita-sicurezza"
2"editoria-stampa-mass_media"
3"lavoro-previdenza"
4"trasporti"
5"cultura-scienze_umane"
6"esteri"
7"istruzione-formazione"
8"industria-impresa-produzione"
9"vita_e_cultura_religiosa"
10"sanita-salute"
11"economia-credito-finanza"
12"musica_e_spettacolo"
13"cronaca"
14"ambiente-natura-territorio"
15"politica-partiti-istituzioni-sindacati"
16"avvenimenti-celebrazioni-eventi_storici"
17"consumi-servizi"
18"individuo-famiglia-associazioni-societa"
19"commercio"
20"scienze-tecnologie"
21"pubblica_amministrazione-enti_locali"
22"tempo_libero"
23"arte-artigianato"
24"usi_e_costumi"
25"beni_culturali"
26"agricoltura-zootecnia"
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Alberto Messina ([email protected])
- **Model type:** BERT for Sequence Classification
- **Language(s) (NLP):** Italian
- **License:** TBD
- **Finetuned from model:** https://huggingface.co/xlm-roberta-base
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** N/A
- **Paper [optional]:** N/A
- **Demo [optional]:** N/A
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
The model should be used giving a short paragraph of text in Italian as input
about which it is requested to get the most probable class.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
TBA
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
The model should not be used as a general purpose classifier, i.e. on text which is not originated from news programme transcription or siilar content.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The training dataset is made up of automatic transcriptions from RAI Italian newscasts, therefore there is an intrinsic bias in the kind
of topics included in the dataset.
## How to Get Started with the Model
Use the code below to get started with the model.
TBA
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
TBA
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
TBA
#### Training Hyperparameters
- **Training regime:** Mixed Precision
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
TBA
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
TBA
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
TBA
### Results
TBA
#### Summary
TBA
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 2 NVIDIA A100/40Gb
- **Hours used:** 2
- **Cloud Provider:** Private Infrastructure
- **Carbon Emitted:** 0.22 kg CO2 eq.
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
TBA
## More Information [optional]
TBA
## Model Card Authors [optional]
Alberto Messina
## Model Card Contact
[email protected]
|