amessina71 commited on
Commit
ef59b97
1 Parent(s): 5d98e68

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -1
README.md CHANGED
@@ -34,4 +34,168 @@ metrics:
34
  - recall
35
  language:
36
  - it
37
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  - recall
35
  language:
36
  - it
37
+ ---
38
+ # Model Card for raicrits/newsClassifier_v1
39
+
40
+ <!-- Provide a quick summary of what the model is/does. -->
41
+
42
+ This model analyses the input text and provides the class the text belongs to among the follofing ones:
43
+ 0"sport"
44
+ 1"giustizia-criminalita-sicurezza"
45
+ 2"editoria-stampa-mass_media"
46
+ 3"lavoro-previdenza"
47
+ 4"trasporti"
48
+ 5"cultura-scienze_umane"
49
+ 6"esteri"
50
+ 7"istruzione-formazione"
51
+ 8"industria-impresa-produzione"
52
+ 9"vita_e_cultura_religiosa"
53
+ 10"sanita-salute"
54
+ 11"economia-credito-finanza"
55
+ 12"musica_e_spettacolo"
56
+ 13"cronaca"
57
+ 14"ambiente-natura-territorio"
58
+ 15"politica-partiti-istituzioni-sindacati"
59
+ 16"avvenimenti-celebrazioni-eventi_storici"
60
+ 17"consumi-servizi"
61
+ 18"individuo-famiglia-associazioni-societa"
62
+ 19"commercio"
63
+ 20"scienze-tecnologie"
64
+ 21"pubblica_amministrazione-enti_locali"
65
+ 22"tempo_libero"
66
+ 23"arte-artigianato"
67
+ 24"usi_e_costumi"
68
+ 25"beni_culturali"
69
+ 26"agricoltura-zootecnia"
70
+
71
+ ## Model Details
72
+
73
+ ### Model Description
74
+
75
+ <!-- Provide a longer summary of what this model is. -->
76
+
77
+
78
+
79
+ - **Developed by:** Alberto Messina ([email protected])
80
+ - **Model type:** BERT for Sequence Classification
81
+ - **Language(s) (NLP):** Italian
82
+ - **License:** TBD
83
+ - **Finetuned from model:** https://huggingface.co/xlm-roberta-base
84
+
85
+ ### Model Sources [optional]
86
+
87
+ <!-- Provide the basic links for the model. -->
88
+
89
+ - **Repository:** N/A
90
+ - **Paper [optional]:** N/A
91
+ - **Demo [optional]:** N/A
92
+
93
+ ## Uses
94
+
95
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
96
+ The model should be used giving a short paragraph of text in Italian as input
97
+ about which it is requested to get the most probable class.
98
+
99
+ ### Direct Use
100
+
101
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
102
+
103
+ TBA
104
+
105
+ ### Out-of-Scope Use
106
+
107
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
108
+
109
+ The model should not be used as a general purpose classifier, i.e. on text which is not originated from news programme transcription or siilar content.
110
+
111
+
112
+ ## Bias, Risks, and Limitations
113
+
114
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
115
+
116
+ The training dataset is made up of automatic transcriptions from RAI Italian newscasts, therefore there is an intrinsic bias in the kind
117
+ of topics included in the dataset.
118
+
119
+ ## How to Get Started with the Model
120
+
121
+ Use the code below to get started with the model.
122
+
123
+ TBA
124
+
125
+ ## Training Details
126
+
127
+ ### Training Data
128
+
129
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
130
+
131
+ TBA
132
+
133
+ ### Training Procedure
134
+
135
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
136
+
137
+ #### Preprocessing [optional]
138
+
139
+ TBA
140
+
141
+
142
+ #### Training Hyperparameters
143
+
144
+ - **Training regime:** Mixed Precision
145
+
146
+ ## Evaluation
147
+
148
+ <!-- This section describes the evaluation protocols and provides the results. -->
149
+ TBA
150
+
151
+ ### Testing Data, Factors & Metrics
152
+
153
+ #### Testing Data
154
+
155
+ <!-- This should link to a Data Card if possible. -->
156
+
157
+ TBA
158
+
159
+ #### Metrics
160
+
161
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
162
+
163
+ TBA
164
+
165
+ ### Results
166
+
167
+ TBA
168
+
169
+ #### Summary
170
+
171
+ TBA
172
+
173
+ ## Environmental Impact
174
+
175
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
176
+
177
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
178
+
179
+ - **Hardware Type:** 2 NVIDIA A100/40Gb
180
+ - **Hours used:** 2
181
+ - **Cloud Provider:** Private Infrastructure
182
+ - **Carbon Emitted:** 0.22 kg CO2 eq.
183
+
184
+ ## Glossary [optional]
185
+
186
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
+
188
+ TBA
189
+
190
+ ## More Information [optional]
191
+
192
+ TBA
193
+
194
+ ## Model Card Authors [optional]
195
+
196
+ Alberto Messina
197
+
198
+ ## Model Card Contact
199
+
200
201
+