File size: 2,717 Bytes
6e7e2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a6bdc
 
6e7e2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Raffel_bert_emotion_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Raffel_bert_emotion_classification

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3423
- Accuracy: 0.9596

I train this model from kaggle dataset, you can access the dataset via this link : https://www.kaggle.com/datasets/abdallahwagih/emotion-dataset

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 167  | 0.1212          | 0.9579   |
| No log        | 2.0   | 334  | 0.1362          | 0.9596   |
| 0.1622        | 3.0   | 501  | 0.2034          | 0.9596   |
| 0.1622        | 4.0   | 668  | 0.2035          | 0.9630   |
| 0.1622        | 5.0   | 835  | 0.2153          | 0.9630   |
| 0.017         | 6.0   | 1002 | 0.2010          | 0.9613   |
| 0.017         | 7.0   | 1169 | 0.2718          | 0.9579   |
| 0.017         | 8.0   | 1336 | 0.2641          | 0.9613   |
| 0.0099        | 9.0   | 1503 | 0.2524          | 0.9613   |
| 0.0099        | 10.0  | 1670 | 0.2918          | 0.9579   |
| 0.0099        | 11.0  | 1837 | 0.2749          | 0.9562   |
| 0.0029        | 12.0  | 2004 | 0.3133          | 0.9562   |
| 0.0029        | 13.0  | 2171 | 0.2952          | 0.9579   |
| 0.0029        | 14.0  | 2338 | 0.3334          | 0.9596   |
| 0.0022        | 15.0  | 2505 | 0.3286          | 0.9596   |
| 0.0022        | 16.0  | 2672 | 0.3340          | 0.9596   |
| 0.0022        | 17.0  | 2839 | 0.3344          | 0.9596   |
| 0.0013        | 18.0  | 3006 | 0.3395          | 0.9596   |
| 0.0013        | 19.0  | 3173 | 0.3423          | 0.9596   |
| 0.0013        | 20.0  | 3340 | 0.3423          | 0.9596   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1