Raffel_bert_emotion_classification

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3423
  • Accuracy: 0.9596

I train this model from kaggle dataset, you can access the dataset via this link : https://www.kaggle.com/datasets/abdallahwagih/emotion-dataset

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 167 0.1212 0.9579
No log 2.0 334 0.1362 0.9596
0.1622 3.0 501 0.2034 0.9596
0.1622 4.0 668 0.2035 0.9630
0.1622 5.0 835 0.2153 0.9630
0.017 6.0 1002 0.2010 0.9613
0.017 7.0 1169 0.2718 0.9579
0.017 8.0 1336 0.2641 0.9613
0.0099 9.0 1503 0.2524 0.9613
0.0099 10.0 1670 0.2918 0.9579
0.0099 11.0 1837 0.2749 0.9562
0.0029 12.0 2004 0.3133 0.9562
0.0029 13.0 2171 0.2952 0.9579
0.0029 14.0 2338 0.3334 0.9596
0.0022 15.0 2505 0.3286 0.9596
0.0022 16.0 2672 0.3340 0.9596
0.0022 17.0 2839 0.3344 0.9596
0.0013 18.0 3006 0.3395 0.9596
0.0013 19.0 3173 0.3423 0.9596
0.0013 20.0 3340 0.3423 0.9596

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
22
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for raffel-22/Raffel_bert_emotion_classification

Finetuned
(2311)
this model