distilgpt2-finetuned-finance

This model is a fine-tuned version of distilgpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.737 0.96 20 3.4239
3.491 1.97 41 3.3857
3.459 2.97 62 3.3642
3.4388 3.98 83 3.3495
3.422 4.99 104 3.3379
3.4102 6.0 125 3.3277
3.5688 6.96 145 3.3192
3.3892 7.96 166 3.3134
3.382 8.97 187 3.3060
3.3749 9.98 208 3.3021
3.3683 10.99 229 3.2967
3.3636 11.99 250 3.2935
3.5269 12.95 270 3.2902
3.3552 13.96 291 3.2885
3.3523 14.97 312 3.2859
3.3492 15.98 333 3.2844
3.3472 16.98 354 3.2825
3.3461 17.99 375 3.2828
3.3456 19.0 396 3.2822
3.3392 19.19 400 3.2821

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0
Downloads last month
18
Safetensors
Model size
81.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for qxnam/distilgpt2-finetuned-finance

Finetuned
(593)
this model