qunfengd's picture
Upload tokenizer
627ff44 verified
|
raw
history blame
3.1 kB
metadata
license: mit
tags:
  - generated_from_keras_callback
base_model: facebook/esm2_t30_150M_UR50D
model-index:
  - name: esm2_t30_150M_UR50D-finetuned-AMP_Classification
    results: []

esm2_t30_150M_UR50D-finetuned-AMP_Classification

This model is a fine-tuned version of facebook/esm2_t30_150M_UR50D on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0433
  • Train Accuracy: 0.9871
  • Validation Loss: 0.7702
  • Validation Accuracy: 0.8014
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.0}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.6498 0.6047 0.6345 0.6288 0
0.5714 0.6877 0.5871 0.6882 1
0.3898 0.8198 0.5698 0.7242 2
0.2481 0.8921 0.5758 0.7696 3
0.1838 0.9248 0.6483 0.7730 4
0.1475 0.9390 0.6187 0.7904 5
0.1147 0.9541 0.6663 0.8007 6
0.0948 0.9618 0.7591 0.7819 7
0.0800 0.9701 0.7534 0.7959 8
0.0709 0.9739 0.8595 0.7810 9
0.0629 0.9767 0.8192 0.7907 10
0.0578 0.9792 0.8855 0.7946 11
0.0532 0.9814 0.9993 0.7762 12
0.0586 0.9801 0.9058 0.7761 13
0.0534 0.9816 0.8338 0.7786 14
0.0508 0.9824 0.7899 0.8033 15
0.0472 0.9840 0.9000 0.7800 16
0.0441 0.9851 0.8732 0.7911 17
0.0486 0.9846 0.8166 0.8088 18
0.0433 0.9871 0.7702 0.8014 19

Framework versions

  • Transformers 4.40.1
  • TensorFlow 2.15.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1