vit-base-beans / README.md
qubvel-hf's picture
qubvel-hf HF staff
Model save
3144d5c verified
|
raw
history blame
2.33 kB
---
library_name: transformers
license: apache-2.0
base_model: timm/resnet18.a1_in1k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-beans
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans
This model is a fine-tuned version of [timm/resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.8195
- Loss: 0.7380
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.0861 | 1.0 | 130 | 0.4286 | 1.0881 |
| 1.0631 | 2.0 | 260 | 0.5414 | 1.0597 |
| 1.0443 | 3.0 | 390 | 0.6692 | 1.0225 |
| 1.0218 | 4.0 | 520 | 0.6842 | 0.9960 |
| 1.0028 | 5.0 | 650 | 0.7293 | 0.9568 |
| 0.9752 | 6.0 | 780 | 0.7669 | 0.9279 |
| 0.924 | 7.0 | 910 | 0.8045 | 0.8852 |
| 0.9179 | 8.0 | 1040 | 0.8120 | 0.8505 |
| 0.9 | 9.0 | 1170 | 0.8045 | 0.8328 |
| 0.8084 | 10.0 | 1300 | 0.8421 | 0.8071 |
| 0.8306 | 11.0 | 1430 | 0.8346 | 0.7760 |
| 0.8031 | 12.0 | 1560 | 0.8346 | 0.7563 |
| 0.8138 | 13.0 | 1690 | 0.8421 | 0.7534 |
| 0.8178 | 14.0 | 1820 | 0.8271 | 0.7508 |
| 0.7901 | 15.0 | 1950 | 0.8195 | 0.7380 |
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.1+cu118
- Datasets 2.21.0
- Tokenizers 0.20.0