File size: 11,126 Bytes
66e1b2d 105a7a6 66e1b2d e18b6a9 66e1b2d 105a7a6 66e1b2d cd90961 66e1b2d a9efdee 66e1b2d a9efdee 66e1b2d 105a7a6 66e1b2d 105a7a6 66e1b2d 105a7a6 66e1b2d 105a7a6 66e1b2d f6ed93f 66e1b2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
datasets:
- VOC2012
library_name: pytorch
license: mit
pipeline_tag: image-segmentation
tags:
- quantized
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/deeplabv3_plus_mobilenet_quantized/web-assets/model_demo.png)
# DeepLabV3-Plus-MobileNet-Quantized: Optimized for Mobile Deployment
## Quantized Deep Convolutional Neural Network model for semantic segmentation
DeepLabV3 Quantized is designed for semantic segmentation at multiple scales, trained on various datasets. It uses MobileNet as a backbone.
This model is an implementation of DeepLabV3-Plus-MobileNet-Quantized found [here]({source_repo}).
This repository provides scripts to run DeepLabV3-Plus-MobileNet-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet_quantized).
### Model Details
- **Model Type:** Semantic segmentation
- **Model Stats:**
- Model checkpoint: VOC2012
- Input resolution: 513x513
- Number of parameters: 5.80M
- Model size: 6.04 MB
- Number of output classes: 21
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| DeepLabV3-Plus-MobileNet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.304 ms | 0 - 146 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.214 ms | 0 - 12 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.so) |
| DeepLabV3-Plus-MobileNet-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 4.221 ms | 11 - 18 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.onnx) |
| DeepLabV3-Plus-MobileNet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.825 ms | 0 - 65 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.844 ms | 1 - 25 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.so) |
| DeepLabV3-Plus-MobileNet-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 3.141 ms | 0 - 72 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.onnx) |
| DeepLabV3-Plus-MobileNet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 14.162 ms | 5 - 48 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 18.291 ms | 1 - 9 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 127.38 ms | 11 - 63 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.315 ms | 0 - 8 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.963 ms | 1 - 2 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 3.335 ms | 0 - 4 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.97 ms | 1 - 2 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 3.294 ms | 0 - 9 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 3.994 ms | 1 - 2 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 3.328 ms | 0 - 115 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.963 ms | 1 - 2 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 4.166 ms | 5 - 71 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 5.51 ms | 1 - 32 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.441 ms | 0 - 42 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite) |
| DeepLabV3-Plus-MobileNet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.816 ms | 1 - 25 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.494 ms | 0 - 47 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.onnx) |
| DeepLabV3-Plus-MobileNet-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.324 ms | 1 - 1 MB | INT8 | NPU | Use Export Script |
| DeepLabV3-Plus-MobileNet-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 4.68 ms | 17 - 17 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.onnx) |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[deeplabv3_plus_mobilenet_quantized]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.export
```
```
Profiling Results
------------------------------------------------------------
DeepLabV3-Plus-MobileNet-Quantized
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 3.3
Estimated peak memory usage (MB): [0, 146]
Total # Ops : 104
Compute Unit(s) : NPU (104 ops)
```
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on DeepLabV3-Plus-MobileNet-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of DeepLabV3-Plus-MobileNet-Quantized can be found [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
* [Source Model Implementation](https://github.com/jfzhang95/pytorch-deeplab-xception)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|