Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,8 +35,8 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 5.
|
40 |
|
41 |
|
42 |
## Installation
|
@@ -44,10 +44,11 @@ More details on model performance across various devices, can be found
|
|
44 |
This model can be installed as a Python package via pip.
|
45 |
|
46 |
```bash
|
47 |
-
pip install qai-hub-models
|
48 |
```
|
49 |
|
50 |
|
|
|
51 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
52 |
|
53 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -97,7 +98,7 @@ python -m qai_hub_models.models.deeplabv3_plus_mobilenet_quantized.export
|
|
97 |
Profile Job summary of DeepLabV3-Plus-MobileNet-Quantized
|
98 |
--------------------------------------------------
|
99 |
Device: Snapdragon X Elite CRD (11)
|
100 |
-
Estimated Inference Time: 5.
|
101 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
102 |
Compute Units: NPU (100) | Total (100)
|
103 |
|
|
|
35 |
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.331 ms | 0 - 3 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.tflite)
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 5.345 ms | 0 - 45 MB | INT8 | NPU | [DeepLabV3-Plus-MobileNet-Quantized.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet-Quantized/blob/main/DeepLabV3-Plus-MobileNet-Quantized.so)
|
40 |
|
41 |
|
42 |
## Installation
|
|
|
44 |
This model can be installed as a Python package via pip.
|
45 |
|
46 |
```bash
|
47 |
+
pip install "qai-hub-models[deeplabv3_plus_mobilenet_quantized]"
|
48 |
```
|
49 |
|
50 |
|
51 |
+
|
52 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
53 |
|
54 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
98 |
Profile Job summary of DeepLabV3-Plus-MobileNet-Quantized
|
99 |
--------------------------------------------------
|
100 |
Device: Snapdragon X Elite CRD (11)
|
101 |
+
Estimated Inference Time: 5.38 ms
|
102 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
103 |
Compute Units: NPU (100) | Total (100)
|
104 |
|