DETR-ResNet50-DC5 / README.md
qaihm-bot's picture
Upload README.md with huggingface_hub
8404823 verified
|
raw
history blame
9.55 kB
---
datasets:
- detection-datasets/coco
library_name: pytorch
license: apache-2.0
pipeline_tag: object-detection
tags:
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/detr_resnet50_dc5/web-assets/model_demo.png)
# DETR-ResNet50-DC5: Optimized for Mobile Deployment
## Transformer based object detector with ResNet50 backbone (dilated C5 stage)
DETR is a machine learning model that can detect objects (trained on COCO dataset).
This model is an implementation of DETR-ResNet50-DC5 found [here]({source_repo}).
This repository provides scripts to run DETR-ResNet50-DC5 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
### Model Details
- **Model Type:** Object detection
- **Model Stats:**
- Model checkpoint: ResNet50-DC5
- Input resolution: 480x480
- Number of parameters: 42.2M
- Model size: 159 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| DETR-ResNet50-DC5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 75.052 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 92.231 ms | 0 - 96 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
| DETR-ResNet50-DC5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 68.196 ms | 0 - 493 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 81.134 ms | 2 - 505 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
| DETR-ResNet50-DC5 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 74.434 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 85.586 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 74.502 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 80.512 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 91.938 ms | 0 - 455 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 49.532 ms | 0 - 253 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
| DETR-ResNet50-DC5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 66.336 ms | 2 - 295 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
| DETR-ResNet50-DC5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 65.232 ms | 83 - 83 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[detr_resnet50_dc5]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.detr_resnet50_dc5.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.detr_resnet50_dc5.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.detr_resnet50_dc5.export
```
```
Profiling Results
------------------------------------------------------------
DETR-ResNet50-DC5
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 75.1
Estimated peak memory usage (MB): [0, 2]
Total # Ops : 789
Compute Unit(s) : NPU (789 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/detr_resnet50_dc5/qai_hub_models/models/DETR-ResNet50-DC5/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.detr_resnet50_dc5 import
# Load the model
# Device
device = hub.Device("Samsung Galaxy S23")
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.detr_resnet50_dc5.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.detr_resnet50_dc5.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on DETR-ResNet50-DC5's performance across various devices [here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of DETR-ResNet50-DC5 can be found [here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
* [Source Model Implementation](https://github.com/facebookresearch/detr)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).