File size: 15,404 Bytes
1a41d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 11,
"id": "10ee1bf4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import torch\n",
"import numpy as np\n",
"from PIL import Image\n",
"from tqdm import tqdm\n",
"from lib.gan_networks import define_G\n",
"import torchvision.transforms as transforms"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "59797ab5",
"metadata": {},
"outputs": [],
"source": [
"def __transforms2pil_resize(method):\n",
" mapper = {\n",
" transforms.InterpolationMode.BILINEAR: Image.BILINEAR,\n",
" transforms.InterpolationMode.BICUBIC: Image.BICUBIC,\n",
" transforms.InterpolationMode.NEAREST: Image.NEAREST,\n",
" transforms.InterpolationMode.LANCZOS: Image.LANCZOS,\n",
" }\n",
" return mapper[method]\n",
"\n",
"\n",
"def __scale_width(\n",
" img, target_size, crop_size, method=transforms.InterpolationMode.BICUBIC\n",
"):\n",
" method = __transforms2pil_resize(method)\n",
" ow, oh = img.size\n",
" if ow == target_size and oh >= crop_size:\n",
" return img\n",
" w = target_size\n",
" h = int(max(target_size * oh / ow, crop_size))\n",
" return img.resize((w, h), method)\n",
"\n",
"\n",
"def get_transform(load_size, crop_size, method=transforms.InterpolationMode.BICUBIC):\n",
" transform_list = [\n",
" transforms.Lambda(lambda img: __scale_width(img, load_size, crop_size, method)),\n",
" transforms.ToTensor(),\n",
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),\n",
" ]\n",
" return transforms.Compose(transform_list)\n",
"\n",
"\n",
"def tensor2im(input_image, imtype=np.uint8):\n",
" \"\"\" \"Converts a Tensor array into a numpy image array.\n",
"\n",
" Parameters:\n",
" input_image (tensor) -- the input image tensor array\n",
" imtype (type) -- the desired type of the converted numpy array\n",
" \"\"\"\n",
" if not isinstance(input_image, np.ndarray):\n",
" if isinstance(input_image, torch.Tensor): # get the data from a variable\n",
" image_tensor = input_image.data\n",
" else:\n",
" return input_image\n",
" image_numpy = (\n",
" image_tensor[0].cpu().float().numpy()\n",
" ) # convert it into a numpy array\n",
" if image_numpy.shape[0] == 1: # grayscale to RGB\n",
" image_numpy = np.tile(image_numpy, (3, 1, 1))\n",
" image_numpy = (\n",
" (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0\n",
" ) # post-processing: tranpose and scaling\n",
" else: # if it is a numpy array, do nothing\n",
" image_numpy = input_image\n",
" return image_numpy.astype(imtype)\n",
"\n",
"\n",
"def create_model_and_transform(pretrained: str = None):\n",
" # Creating model\n",
" input_nc = 3\n",
" output_nc = 3\n",
" ngf = 64\n",
" netG = \"resnet_9blocks\"\n",
" norm = \"instance\"\n",
" no_dropout = True\n",
" init_type = \"normal\"\n",
" init_gain = 0.02\n",
" gpu_ids = []\n",
"\n",
" netG_A = define_G(\n",
" input_nc,\n",
" output_nc,\n",
" ngf,\n",
" netG,\n",
" norm,\n",
" not no_dropout,\n",
" init_type,\n",
" init_gain,\n",
" gpu_ids,\n",
" )\n",
" if pretrained:\n",
" chkpntA = torch.load(pretrained)\n",
" netG_A.load_state_dict(chkpntA)\n",
" netG_A.eval()\n",
"\n",
" netG_A = netG_A.cuda()\n",
"\n",
" # Creating transform\n",
" load_size = 1280\n",
" crop_size = 224\n",
" image_transforms = get_transform(load_size=load_size, crop_size=crop_size)\n",
" return netG_A, image_transforms\n",
"\n",
"\n",
"def run_inference(img_path, model, transform):\n",
" image = Image.open(img_path)\n",
" inputs = image_transforms(image).unsqueeze(0).to(\"cuda\")\n",
"\n",
" with torch.no_grad():\n",
" out = model(inputs)\n",
" out = tensor2im(out)\n",
" return Image.fromarray(out)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "6fc20d26",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"initialize network with normal\n"
]
},
{
"ename": "RuntimeError",
"evalue": "Error(s) in loading state_dict for UnetGenerator:\n\tMissing key(s) in state_dict: \"model.model.0.weight\", \"model.model.0.bias\", \"model.model.1.model.1.weight\", \"model.model.1.model.1.bias\", \"model.model.1.model.3.model.1.weight\", \"model.model.1.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.5.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.5.bias\", \"model.model.1.model.3.model.3.model.3.model.5.weight\", \"model.model.1.model.3.model.3.model.3.model.5.bias\", \"model.model.1.model.3.model.3.model.5.weight\", \"model.model.1.model.3.model.3.model.5.bias\", \"model.model.1.model.3.model.5.weight\", \"model.model.1.model.3.model.5.bias\", \"model.model.1.model.5.weight\", \"model.model.1.model.5.bias\", \"model.model.3.weight\", \"model.model.3.bias\". \n\tUnexpected key(s) in state_dict: \"model.1.weight\", \"model.1.bias\", \"model.4.weight\", \"model.4.bias\", \"model.7.weight\", \"model.7.bias\", \"model.10.conv_block.1.weight\", \"model.10.conv_block.1.bias\", \"model.10.conv_block.5.weight\", \"model.10.conv_block.5.bias\", \"model.11.conv_block.1.weight\", \"model.11.conv_block.1.bias\", \"model.11.conv_block.5.weight\", \"model.11.conv_block.5.bias\", \"model.12.conv_block.1.weight\", \"model.12.conv_block.1.bias\", \"model.12.conv_block.5.weight\", \"model.12.conv_block.5.bias\", \"model.13.conv_block.1.weight\", \"model.13.conv_block.1.bias\", \"model.13.conv_block.5.weight\", \"model.13.conv_block.5.bias\", \"model.14.conv_block.1.weight\", \"model.14.conv_block.1.bias\", \"model.14.conv_block.5.weight\", \"model.14.conv_block.5.bias\", \"model.15.conv_block.1.weight\", \"model.15.conv_block.1.bias\", \"model.15.conv_block.5.weight\", \"model.15.conv_block.5.bias\", \"model.16.conv_block.1.weight\", \"model.16.conv_block.1.bias\", \"model.16.conv_block.5.weight\", \"model.16.conv_block.5.bias\", \"model.17.conv_block.1.weight\", \"model.17.conv_block.1.bias\", \"model.17.conv_block.5.weight\", \"model.17.conv_block.5.bias\", \"model.18.conv_block.1.weight\", \"model.18.conv_block.1.bias\", \"model.18.conv_block.5.weight\", \"model.18.conv_block.5.bias\", \"model.19.weight\", \"model.19.bias\", \"model.22.weight\", \"model.22.bias\", \"model.26.weight\", \"model.26.bias\". ",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[13], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m gan, image_transforms \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_model_and_transform\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m./checkpoints/clear2snowy.pth\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"Cell \u001b[0;32mIn[12], line 82\u001b[0m, in \u001b[0;36mcreate_model_and_transform\u001b[0;34m(pretrained)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m pretrained:\n\u001b[1;32m 81\u001b[0m chkpntA \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mload(pretrained)\n\u001b[0;32m---> 82\u001b[0m \u001b[43mnetG_A\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_state_dict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchkpntA\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 83\u001b[0m netG_A\u001b[38;5;241m.\u001b[39meval()\n\u001b[1;32m 85\u001b[0m netG_A \u001b[38;5;241m=\u001b[39m netG_A\u001b[38;5;241m.\u001b[39mcuda()\n",
"File \u001b[0;32m~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:2189\u001b[0m, in \u001b[0;36mModule.load_state_dict\u001b[0;34m(self, state_dict, strict, assign)\u001b[0m\n\u001b[1;32m 2184\u001b[0m error_msgs\u001b[38;5;241m.\u001b[39minsert(\n\u001b[1;32m 2185\u001b[0m \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mMissing key(s) in state_dict: \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m. \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 2186\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mk\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m missing_keys)))\n\u001b[1;32m 2188\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(error_msgs) \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m-> 2189\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mError(s) in loading state_dict for \u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\t\u001b[39;00m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(\n\u001b[1;32m 2190\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\t\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(error_msgs)))\n\u001b[1;32m 2191\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _IncompatibleKeys(missing_keys, unexpected_keys)\n",
"\u001b[0;31mRuntimeError\u001b[0m: Error(s) in loading state_dict for UnetGenerator:\n\tMissing key(s) in state_dict: \"model.model.0.weight\", \"model.model.0.bias\", \"model.model.1.model.1.weight\", \"model.model.1.model.1.bias\", \"model.model.1.model.3.model.1.weight\", \"model.model.1.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.1.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.1.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.3.model.3.bias\", \"model.model.1.model.3.model.3.model.3.model.3.model.5.weight\", \"model.model.1.model.3.model.3.model.3.model.3.model.5.bias\", \"model.model.1.model.3.model.3.model.3.model.5.weight\", \"model.model.1.model.3.model.3.model.3.model.5.bias\", \"model.model.1.model.3.model.3.model.5.weight\", \"model.model.1.model.3.model.3.model.5.bias\", \"model.model.1.model.3.model.5.weight\", \"model.model.1.model.3.model.5.bias\", \"model.model.1.model.5.weight\", \"model.model.1.model.5.bias\", \"model.model.3.weight\", \"model.model.3.bias\". \n\tUnexpected key(s) in state_dict: \"model.1.weight\", \"model.1.bias\", \"model.4.weight\", \"model.4.bias\", \"model.7.weight\", \"model.7.bias\", \"model.10.conv_block.1.weight\", \"model.10.conv_block.1.bias\", \"model.10.conv_block.5.weight\", \"model.10.conv_block.5.bias\", \"model.11.conv_block.1.weight\", \"model.11.conv_block.1.bias\", \"model.11.conv_block.5.weight\", \"model.11.conv_block.5.bias\", \"model.12.conv_block.1.weight\", \"model.12.conv_block.1.bias\", \"model.12.conv_block.5.weight\", \"model.12.conv_block.5.bias\", \"model.13.conv_block.1.weight\", \"model.13.conv_block.1.bias\", \"model.13.conv_block.5.weight\", \"model.13.conv_block.5.bias\", \"model.14.conv_block.1.weight\", \"model.14.conv_block.1.bias\", \"model.14.conv_block.5.weight\", \"model.14.conv_block.5.bias\", \"model.15.conv_block.1.weight\", \"model.15.conv_block.1.bias\", \"model.15.conv_block.5.weight\", \"model.15.conv_block.5.bias\", \"model.16.conv_block.1.weight\", \"model.16.conv_block.1.bias\", \"model.16.conv_block.5.weight\", \"model.16.conv_block.5.bias\", \"model.17.conv_block.1.weight\", \"model.17.conv_block.1.bias\", \"model.17.conv_block.5.weight\", \"model.17.conv_block.5.bias\", \"model.18.conv_block.1.weight\", \"model.18.conv_block.1.bias\", \"model.18.conv_block.5.weight\", \"model.18.conv_block.5.bias\", \"model.19.weight\", \"model.19.bias\", \"model.22.weight\", \"model.22.bias\", \"model.26.weight\", \"model.26.bias\". "
]
}
],
"source": [
"gan, image_transforms = create_model_and_transform(\"./checkpoints/clear2snowy.pth\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d44ebf97",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 100/100 [00:39<00:00, 2.51it/s]\n"
]
}
],
"source": [
"image_path = os.listdir(\"./data/images\")\n",
"save_folder = \"./data/gan/snow_images\"\n",
"\n",
"for img in tqdm(image_path):\n",
" trg = os.path.join(\"./data/images\", img)\n",
" src = os.path.join(f\"./data/gan/snow_images/\", img.split(\".\")[0] + \".jpg\")\n",
" if not (os.path.exists(src)):\n",
" out = run_inference(img_path=trg, model=gan, transform=image_transforms)\n",
" out.save(src)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|