File size: 19,268 Bytes
ce75ba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
---
license: apache-2.0
language:
- zh
- en
library_name: transformers
tags:
- qihoo360
- 奇虎360
- zhinao
- 360Zhinao
- pretrain
---
<p align="left">
中文 |   <a href="./README.md">English</a></a> 
</p>
<br>
<div align="center">
<h1>
360智脑
</h1>
</div>
<div align="center">
🤗 <a href="https://huggingface.co/qihoo360">Hugging Face</a>   |   
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
</div>
<br>
<p align="center">
欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
</p>
<br>
# 模型介绍
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
- **360Zhinao2-7B-Base**
- **360Zhinao2-7B-Chat-4K**
- **360Zhinao2-7B-Chat-32K**
- **360Zhinao2-7B-Chat-360K**
360智脑大模型特点如下:
- **基础模型**:采⽤当前主流的两阶段训练⽅法,第⼀阶段采用cosine学习率总共训练10T
token,第二阶段我们加⼤了⾼质量数据的占⽐,训练了100B⾼质量token,学习率LR直接decay到0。**360Zhinao2-7B总共训练数据量达10.1T token**。
- **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。
<br>
# 更新信息
- [2024.11.18] 🔥🔥🔥我们发布了360Zhinao2-7B,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
- [2024.05.23] 我们发布了360Zhinao-search以及360Zhinao-1.8B-Reranking两个模型,分别在[C-MTEB 榜单](https://huggingface.co/spaces/mteb/leaderboard)的Retrieval和Reranking任务上排名第一。
- [2024.05.20] 我们将llama3的窗口长度扩展到360k并发布了**llama3-8B-360Zhinao-360k-Instruct**<a href="https://huggingface.co/qihoo360/llama3-8B-360Zhinao-360k-Instruct">🤗</a>
- [2024.04.12] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
技术报告详见[arXiv](https://arxiv.org/abs/2405.13386)。
<br>
# 目录
- [下载地址](#下载地址)
- [模型评估](#模型评估)
- [快速开始](#快速开始)
- [模型推理](#模型推理)
- [模型微调](#模型微调)
- [许可证](#许可证)
<br>
# 下载地址
本次发布版本和下载链接见下表:
| Size | Model | BF16 | Int4|
|:-:|-|:-:|:-:|
| 7B | 360Zhinao2-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Base">🤗</a> | |
| 7B | 360Zhinao2-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K-Int4">🤗</a> |
| 7B | 360Zhinao2-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K-Int4">🤗</a> |
| 7B | 360Zhinao2-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K-Int4">🤗</a> |
<br>
# 模型评估
我们使⽤了开源⼯具opencompass对模型进⾏评估,对⽐了近半年国内外开源的10B以下模型,
360Zhinao2-7B具备较强的竞争⼒。360Zhinao2-7B在CEval(中⽂
考试)、C3(中⽂阅读理解)、lcsts(中⽂短⽂本摘要)等中⽂benchmark上表现不俗,中⽂
benchmark均分排名第⼀。在挑战性的竞赛数学数据集math上,同样排名第⼀。**360Zhinao2-7B模
型在中⽂处理能⼒、复杂数学推理能⼒两个⽅⾯,具备优势。**
<table>
<tr>
<td>Type</td><td>Datasets</td><td>language</td><td>glm4-9b</td><td>Qwen2.5-7B</td><td>internlm2.5-7b</td><td>Yi1.5-9B</td><td>gemma2-9b</td><td>Llama3.1-8B</td><td>360Zhinao2-7B</td>
</tr>
<tr>
<td rowspan="5">Exam</td><td>ceval</td><td>zh</td><td>75.83</td><td>81.41</td><td>77.71</td><td>73.51</td><td>56.36</td><td>51.67</td><td><strong>83.04</strong></td>
</tr>
<tr>
<td>mmlu</td><td>en</td><td>75.5</td><td>75.5</td><td>71.55</td><td>71.43</td><td>72.22</td><td>66.75</td><td>67.84</td>
</tr>
<tr>
<td>cmmlu</td><td>zh</td><td>74.24</td><td>81.79</td><td>78.77</td><td>74.2</td><td>58.89</td><td>52.49</td><td>73.8</td>
</tr>
<tr>
<td>ARC-c</td><td>en</td><td>94.92</td><td>80</td><td>85.08</td><td>87.46</td><td>77.63</td><td>80.68</td><td>87.12</td>
</tr>
<tr>
<td>ARC-e</td><td>en</td><td>98.41</td><td>84.83</td><td>95.24</td><td>94.53</td><td>78.84</td><td>89.77</td><td>92.77</td>
</tr>
<tr>
<td rowspan="2">Language</td><td>WiC</td><td>en</td><td>51.57</td><td>52.82</td><td>50.78</td><td>50.63</td><td>50.47</td><td>50</td><td>49.84</td>
</tr>
<tr>
<td>WSC</td><td>en</td><td>68.27</td><td>68.27</td><td>69.23</td><td>66.35</td><td>68.27</td><td>67.31</td><td>65.38</td>
</tr>
<tr>
<td rowspan="2">Knowledge</td>
<td>BoolQ</td><td>en</td><td>81.8</td><td>83.88</td><td>89.51</td><td>84.46</td><td>85.6</td><td>82.2</td><td>88.29</td>
</tr>
<tr>
<td>commonsense_qa</td><td>en</td><td>71.17</td><td>73.22</td><td>68.55</td><td>71.58</td><td>68.47</td><td>71.25</td><td>69.78</td>
</tr>
<tr>
<td rowspan="6">Understanding</td>
<td>C3</td><td>zh</td><td>91.51</td><td>92</td><td>93.04</td><td>85.86</td><td>81.64</td><td>83.51</td><td><strong>93.26</strong></td>
</tr>
<tr>
<td>race-middle</td><td>en</td><td>91.99</td><td>91.02</td><td>92.06</td><td>91.16</td><td>88.09</td><td>81.69</td><td>90.46</td>
</tr>
<tr>
<td>race-high</td><td>en</td><td>90.71</td><td>87.91</td><td>90.08</td><td>88.34</td><td>82.08</td><td>78.73</td><td>86.74</td>
</tr>
<tr>
<td>lcsts</td><td>zh</td><td>18.29</td><td>15.82</td><td>15.96</td><td>16.49</td><td>10.62</td><td>17.29</td><td><strong>18.61</strong></td>
</tr>
<tr>
<td>eprstmt-dev</td><td>zh</td><td>91.88</td><td>86.88</td><td>91.25</td><td>91.88</td><td>48.12</td><td>83.12</td><td>90</td>
</tr>
<tr>
<td>lambada</td><td>en</td><td>71.67</td><td>71.14</td><td>69.98</td><td>70.64</td><td>75.43</td><td>74.23</td><td>72.56</td>
</tr>
<tr>
<td rowspan="3">Reasoning</td>
<td>hellaswag</td><td>en</td><td>70.25</td><td>72.76</td><td>70.38</td><td>71.55</td><td>66.83</td><td>74.65</td><td>71.49</td>
</tr>
<tr>
<td>siqa</td><td>en</td><td>81.73</td><td>72.52</td><td>78.97</td><td>76.2</td><td>58.96</td><td>64.18</td><td>77.12</td>
</tr>
<tr>
<td>bbh</td><td>en</td><td>73.68</td><td>54.63</td><td>59.43</td><td>67.86</td><td>68.45</td><td>59.9</td><td>46.54</td>
</tr>
<tr>
<td rowspan="2">Code</td>
<td>humaneval</td><td>en</td><td>69.51</td><td>75</td><td>60.37</td><td>26.22</td><td>5.49</td><td>27.44</td><td>60.98</td>
</tr>
<tr>
<td>mbpp</td><td>en</td><td>60</td><td>60</td><td>43.6</td><td>56.8</td><td>51.2</td><td>42.6</td><td>54</td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>math</td><td>en</td><td>26.86</td><td>38</td><td>27.14</td><td>27.06</td><td>28.52</td><td>15.32</td><td><strong>38.34</strong></td>
</tr>
<tr>
<td>gsm8k</td><td>en</td><td>78.54</td><td>79.76</td><td>52.54</td><td>71.11</td><td>73.09</td><td>56.25</td><td>75.51</td>
</tr>
<tr>
<td rowspan="2">Overall</td>
<td>avg_zh</td><td></td><td>70.35</td><td>71.58</td><td>71.35</td><td>68.39</td><td>51.13</td><td>57.62</td><td><strong>71.74</strong></td>
</tr>
<tr>
<td>avg_all</td><td></td><td>73.11</td><td>71.78</td><td>69.60</td><td>68.88</td><td>61.60</td><td>62.32</td><td>70.61</td>
</tr>
</table>
## 基础模型
# 快速开始
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao2-7B-Base和360Zhinao2-7B-Chat
## 依赖安装
- python 3.8 and above
- pytorch 2.0 and above
- transformers 4.37.2 and above
- CUDA 11.4 and above are recommended.
```shell
pip install -r requirements.txt
```
我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目)
>flash-attn >= 2.3.6
```shell
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
```
## 🤗 Transformers
### Base模型推理
此代码演示使用transformers快速使用360Zhinao2-7B-Base模型进行推理
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
device_map="auto",
trust_remote_code=True)
generation_config = GenerationConfig.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
```
### Chat模型推理
此代码演示使用transformers快速使用360Zhinao2-7B-Chat-4K模型进行推理
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
device_map="auto",
trust_remote_code=True)
generation_config = GenerationConfig.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
messages = []
#round-1
messages.append({"role": "user", "content": "介绍一下刘德华"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)
#round-2
messages.append({"role": "user", "content": "他有什么代表作?"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)
```
## 🤖 ModelScope
### Base模型推理
此代码演示使用ModelScope快速使用360Zhinao2-7B-Base模型进行推理
```python
from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
device_map="auto",
trust_remote_code=True)
generation_config = GenerationConfig.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
```
### Chat模型推理
此代码演示使用ModelScope快速使用360Zhinao2-7B-Chat-4K模型进行推理
```python
from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
device_map="auto",
trust_remote_code=True)
generation_config = GenerationConfig.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
messages = []
#round-1
messages.append({"role": "user", "content": "介绍一下刘德华"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)
#round-2
messages.append({"role": "user", "content": "他有什么代表作?"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)
```
## 终端 Demo
可使用终端交互实现快速体验
```shell
python cli_demo.py
```
<p align="center">
<img src="assets/cli_demo.gif" width="600" />
<p>
注:我们尚未支持Mac上`device = 'mps'`。
## 网页 Demo
也可使用网页交互实现快速体验
```shell
streamlit run web_demo.py
```
<p align="center">
<img src="assets/web_demo.gif" width="600" />
<p>
## API Demo
启动命令
```shell
python openai_api.py
```
请求参数
```shell
curl 'http://localhost:8360/v1/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"max_new_tokens": 200,
"do_sample": true,
"top_k": 0,
"top_p": 0.8,
"temperature": 1.0,
"repetition_penalty": 1.0,
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "你好"}
]
}'
```
<br>
# 模型推理
## 模型量化
我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
## 模型部署
### vLLM安装环境
如希望部署及加速推理,我们建议你使用 `vLLM==0.3.3`。
如果你使用**CUDA 12.1和PyTorch 2.1**,可以直接使用以下命令安装vLLM。
```shell
pip install vllm==0.3.3
```
否则请参考vLLM官方的[安装说明](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
>安装完成后,还需要以下操作~
1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码
```shell
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
```
### vLLM服务启动
启动服务
```shell
python -m vllm.entrypoints.openai.api_server \
--served-model-name 360Zhinao2-7B-Chat-4K \
--model qihoo360/360Zhinao2-7B-Chat-4K \
--trust-remote-code \
--tensor-parallel-size 1 \
--max-model-len 4096 \
--host 0.0.0.0 \
--port 8360
```
使用curl请求服务
```shell
curl http://localhost:8360/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "360Zhinao2-7B-Chat-4K",
"max_tokens": 200,
"top_k": -1,
"top_p": 0.8,
"temperature": 1.0,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "你好"}
],
"stop": [
"<eod>",
"<|im_end|>",
"<|im_start|>"
]
}'
```
使用python请求服务
```python
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8360/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="360Zhinao2-7B-Chat-4K",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "你好"},
],
stop=[
"<eod>",
"<|im_end|>",
"<|im_start|>"
],
presence_penalty=0.0,
frequency_penalty=0.0
)
print("Chat response:", chat_response)
```
> 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
<br>
# 模型微调
## 训练数据
我们提供了微调训练样例数据 data/test.json,该样例数据是从 [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) 采样出 1 万条,并且做了格式转换。
数据格式:
```json
[
{
"id": 1,
"conversations": [
{
"from": "system",
"value": "You are a helpful assistant."
},
{
"from": "user",
"value": "您好啊"
},
{
"from": "assistant",
"value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
}
]
}
]
```
## 微调训练
训练脚本如下:
```shell
set -x
HOSTFILE=hostfile
DS_CONFIG=./finetune/ds_config_zero2.json
# PARAMS
LR=5e-6
EPOCHS=3
MAX_LEN=4096
BATCH_SIZE=4
NUM_NODES=1
NUM_GPUS=8
MASTER_PORT=29500
IS_CONCAT=False # 是否数据拼接到最大长度(MAX_LEN)
DATA_PATH="./data/training_data_sample.json"
MODEL_PATH="qihoo360/360Zhinao2-7B-Base"
OUTPUT_DIR="./outputs/"
deepspeed --hostfile ${HOSTFILE} \
--master_port ${MASTER_PORT} \
--num_nodes ${NUM_NODES} \
--num_gpus ${NUM_GPUS} \
finetune.py \
--report_to "tensorboard" \
--data_path ${DATA_PATH} \
--model_name_or_path ${MODEL_PATH} \
--output_dir ${OUTPUT_DIR} \
--model_max_length ${MAX_LEN} \
--num_train_epochs ${EPOCHS} \
--per_device_train_batch_size ${BATCH_SIZE} \
--gradient_accumulation_steps 1 \
--save_strategy steps \
--save_steps 200 \
--learning_rate ${LR} \
--lr_scheduler_type cosine \
--adam_beta1 0.9 \
--adam_beta2 0.95 \
--adam_epsilon 1e-8 \
--max_grad_norm 1.0 \
--weight_decay 0.1 \
--warmup_ratio 0.01 \
--gradient_checkpointing True \
--bf16 True \
--tf32 True \
--deepspeed ${DS_CONFIG} \
--is_concat ${IS_CONCAT} \
--logging_steps 1 \
--log_on_each_node False
```
```shell
bash finetune/ds_finetune.sh
```
- 可通过配置hostfile,实现单机、多机训练。
- 可通过配置ds_config,实现zero2、zero3。
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
<br>
# 许可证
本仓库源码遵循开源许可证Apache 2.0。
360智脑开源模型支持免费商用,无需向我们进行特殊申请。 |