Upload folder using huggingface_hub
Browse files- README.md +554 -3
- README_CN.md +564 -0
- config.json +67 -0
- configuration_zhinao.py +92 -0
- generation_config.json +14 -0
- generation_utils.py +187 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +746 -0
- modeling_zhinao.py +1094 -0
- special_tokens_map.json +3 -0
- tokenization_zhinao.py +257 -0
- tokenizer_config.json +19 -0
- vocab/360.tiktoken +0 -0
README.md
CHANGED
@@ -1,3 +1,554 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- qihoo360
|
9 |
+
- 奇虎360
|
10 |
+
- zhinao
|
11 |
+
- 360Zhinao
|
12 |
+
- pretrain
|
13 |
+
---
|
14 |
+
|
15 |
+
<p align="left">
|
16 |
+
<a href="./README_CN.md">中文</a> |   English</a> 
|
17 |
+
</p>
|
18 |
+
<br>
|
19 |
+
|
20 |
+
<div align="center">
|
21 |
+
<h1>
|
22 |
+
360Zhinao2 (360智脑)
|
23 |
+
</h1>
|
24 |
+
</div>
|
25 |
+
<div align="center">
|
26 |
+
🤗 <a href="https://huggingface.co/qihoo360">HuggingFace</a>   |   
|
27 |
+
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
28 |
+
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
|
29 |
+
</div>
|
30 |
+
<br>
|
31 |
+
<p align="center">
|
32 |
+
Feel free to visit 360Zhinao's official website<a href="https://ai.360.com"> https://ai.360.com</a> for more experience.
|
33 |
+
</p>
|
34 |
+
|
35 |
+
<br>
|
36 |
+
|
37 |
+
# Introduction
|
38 |
+
🎉🎉🎉 We released the 360Zhinao2 model series:
|
39 |
+
- **360Zhinao2-7B-Base**
|
40 |
+
- **360Zhinao2-7B-Chat-4K**
|
41 |
+
- **360Zhinao2-7B-Chat-32K**
|
42 |
+
- **360Zhinao2-7B-Chat-360K**
|
43 |
+
|
44 |
+
Notable features of our 360Zhinao models are:
|
45 |
+
|
46 |
+
- **Base Model:** Using popular two-stage training method, In the first stage we totally train 10T tokens with a cosine learning rate schedule. In the second stage we increase the proportion of high-quality data and totally train 100B tokens, with the learning rate decaying directly to 0. The total training data for 360Zhinao2-7B amounts to 10.1T tokens.
|
47 |
+
- **Chat Models:** Powerful chat capabilities and three context lengths of 4K, 32K and 360K.
|
48 |
+
|
49 |
+
<br>
|
50 |
+
|
51 |
+
# News and Updates
|
52 |
+
- [2024.11.18] 🔥🔥🔥We release 360Zhinao2-7B, providing access to both the Base model and Chat models with text lengths of 4K, 32K, and 360K.
|
53 |
+
- [2024.05.23] We released two models, 360Zhinao-search and 360Zhinao-1.8B-Reranking, which ranked first respectively in the Retrieval and Reranking tasks of [C-MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) .
|
54 |
+
- [2024.05.20] We extended llama3 and released **llama3-8B-360Zhinao-360k-Instruct**<a href="https://huggingface.co/qihoo360/llama3-8B-360Zhinao-360k-Instruct">🤗</a>
|
55 |
+
- [2024.04.12] We released **360Zhinao-7B** v1.0, including the base model and three chat models with context lengths 4K, 32K and 360K.
|
56 |
+
Technical report is on [arXiv](https://arxiv.org/abs/2405.13386).
|
57 |
+
|
58 |
+
<br>
|
59 |
+
|
60 |
+
# Table of contents
|
61 |
+
- [Download URL](#Download-URL)
|
62 |
+
- [Model Evaluation](#Model-Evaluation)
|
63 |
+
- [Quickstart](#Quickstart)
|
64 |
+
- [Model Inference](#Model-Inference)
|
65 |
+
- [Model Finetune](#Model-Finetune)
|
66 |
+
- [License](#License)
|
67 |
+
|
68 |
+
<br>
|
69 |
+
|
70 |
+
# Download URL
|
71 |
+
|
72 |
+
| Size | Model | BF16 | Int4|
|
73 |
+
|-|-|-|-|
|
74 |
+
| 7B | 360Zhinao2-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Base">🤗</a> | |
|
75 |
+
| 7B | 360Zhinao2-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K-Int4">🤗</a> |
|
76 |
+
| 7B | 360Zhinao2-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K-Int4">🤗</a> |
|
77 |
+
| 7B | 360Zhinao2-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K-Int4">🤗</a> |
|
78 |
+
|
79 |
+
<br>
|
80 |
+
|
81 |
+
# Model Evaluation
|
82 |
+
## Base Model
|
83 |
+
We used the open-source tool OpenCompass to evaluate the model and compared it with open-source models under 10B from the past six months. The 360Zhinao2-7B model is competive. The 360Zhinao2-7B model performs well on Chinese benchmarks such as CEval, C3 and LCSTS. The average socres of Chinese benchmarks is No 1. It also ranks No 1 on Math which is a challenging competition math dataset. **The 360Zhinao2-7B model has advantages in Chinese benchmark and challenging competition math.**
|
84 |
+
|
85 |
+
<table>
|
86 |
+
<tr>
|
87 |
+
<td>Type</td><td>Datasets</td><td>language</td><td>glm4-9b</td><td>Qwen2.5-7B</td><td>internlm2.5-7b</td><td>Yi1.5-9B</td><td>gemma2-9b</td><td>Llama3.1-8B</td><td>360Zhinao2-7B</td>
|
88 |
+
</tr>
|
89 |
+
<tr>
|
90 |
+
<td rowspan="5">Exam</td><td>ceval</td><td>zh</td><td>75.83</td><td>81.41</td><td>77.71</td><td>73.51</td><td>56.36</td><td>51.67</td><td><strong>83.04</strong></td>
|
91 |
+
</tr>
|
92 |
+
<tr>
|
93 |
+
<td>mmlu</td><td>en</td><td>75.5</td><td>75.5</td><td>71.55</td><td>71.43</td><td>72.22</td><td>66.75</td><td>67.84</td>
|
94 |
+
</tr>
|
95 |
+
<tr>
|
96 |
+
<td>cmmlu</td><td>zh</td><td>74.24</td><td>81.79</td><td>78.77</td><td>74.2</td><td>58.89</td><td>52.49</td><td>73.8</td>
|
97 |
+
</tr>
|
98 |
+
<tr>
|
99 |
+
<td>ARC-c</td><td>en</td><td>94.92</td><td>80</td><td>85.08</td><td>87.46</td><td>77.63</td><td>80.68</td><td>87.12</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>ARC-e</td><td>en</td><td>98.41</td><td>84.83</td><td>95.24</td><td>94.53</td><td>78.84</td><td>89.77</td><td>92.77</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td rowspan="2">Language</td><td>WiC</td><td>en</td><td>51.57</td><td>52.82</td><td>50.78</td><td>50.63</td><td>50.47</td><td>50</td><td>49.84</td>
|
106 |
+
</tr>
|
107 |
+
<tr>
|
108 |
+
<td>WSC</td><td>en</td><td>68.27</td><td>68.27</td><td>69.23</td><td>66.35</td><td>68.27</td><td>67.31</td><td>65.38</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td rowspan="2">Knowledge</td>
|
112 |
+
<td>BoolQ</td><td>en</td><td>81.8</td><td>83.88</td><td>89.51</td><td>84.46</td><td>85.6</td><td>82.2</td><td>88.29</td>
|
113 |
+
</tr>
|
114 |
+
<tr>
|
115 |
+
<td>commonsense_qa</td><td>en</td><td>71.17</td><td>73.22</td><td>68.55</td><td>71.58</td><td>68.47</td><td>71.25</td><td>69.78</td>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<td rowspan="6">Understanding</td>
|
119 |
+
<td>C3</td><td>zh</td><td>91.51</td><td>92</td><td>93.04</td><td>85.86</td><td>81.64</td><td>83.51</td><td><strong>93.26</strong></td>
|
120 |
+
</tr>
|
121 |
+
<tr>
|
122 |
+
<td>race-middle</td><td>en</td><td>91.99</td><td>91.02</td><td>92.06</td><td>91.16</td><td>88.09</td><td>81.69</td><td>90.46</td>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<td>race-high</td><td>en</td><td>90.71</td><td>87.91</td><td>90.08</td><td>88.34</td><td>82.08</td><td>78.73</td><td>86.74</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>lcsts</td><td>zh</td><td>18.29</td><td>15.82</td><td>15.96</td><td>16.49</td><td>10.62</td><td>17.29</td><td><strong>18.61</strong></td>
|
129 |
+
</tr>
|
130 |
+
<tr>
|
131 |
+
<td>eprstmt-dev</td><td>zh</td><td>91.88</td><td>86.88</td><td>91.25</td><td>91.88</td><td>48.12</td><td>83.12</td><td>90</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>lambada</td><td>en</td><td>71.67</td><td>71.14</td><td>69.98</td><td>70.64</td><td>75.43</td><td>74.23</td><td>72.56</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td rowspan="3">Reasoning</td>
|
138 |
+
<td>hellaswag</td><td>en</td><td>70.25</td><td>72.76</td><td>70.38</td><td>71.55</td><td>66.83</td><td>74.65</td><td>71.49</td>
|
139 |
+
</tr>
|
140 |
+
<tr>
|
141 |
+
<td>siqa</td><td>en</td><td>81.73</td><td>72.52</td><td>78.97</td><td>76.2</td><td>58.96</td><td>64.18</td><td>77.12</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>bbh</td><td>en</td><td>73.68</td><td>54.63</td><td>59.43</td><td>67.86</td><td>68.45</td><td>59.9</td><td>46.54</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td rowspan="2">Code</td>
|
148 |
+
<td>humaneval</td><td>en</td><td>69.51</td><td>75</td><td>60.37</td><td>26.22</td><td>5.49</td><td>27.44</td><td>60.98</td>
|
149 |
+
</tr>
|
150 |
+
<tr>
|
151 |
+
<td>mbpp</td><td>en</td><td>60</td><td>60</td><td>43.6</td><td>56.8</td><td>51.2</td><td>42.6</td><td>54</td>
|
152 |
+
</tr>
|
153 |
+
<tr>
|
154 |
+
<td rowspan="2">Math</td>
|
155 |
+
<td>math</td><td>en</td><td>26.86</td><td>38</td><td>27.14</td><td>27.06</td><td>28.52</td><td>15.32</td><td><strong>38.34</strong></td>
|
156 |
+
</tr>
|
157 |
+
<tr>
|
158 |
+
<td>gsm8k</td><td>en</td><td>78.54</td><td>79.76</td><td>52.54</td><td>71.11</td><td>73.09</td><td>56.25</td><td>75.51</td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td rowspan="2">Overall</td>
|
162 |
+
<td>avg_zh</td><td></td><td>70.35</td><td>71.58</td><td>71.35</td><td>68.39</td><td>51.13</td><td>57.62</td><td><strong>71.74</strong></td>
|
163 |
+
</tr>
|
164 |
+
<tr>
|
165 |
+
<td>avg_all</td><td></td><td>73.11</td><td>71.78</td><td>69.60</td><td>68.88</td><td>61.60</td><td>62.32</td><td>70.61</td>
|
166 |
+
</tr>
|
167 |
+
</table>
|
168 |
+
|
169 |
+
|
170 |
+
<br>
|
171 |
+
|
172 |
+
# Quickstart
|
173 |
+
We provide simple examples illustrating the use of 360Zhinao2-7B-Base and 360Zhinao2-7B-Chat on 🤖ModelScope and 🤗Transformers.
|
174 |
+
|
175 |
+
## Dependency Installation
|
176 |
+
- python >= 3.8
|
177 |
+
- pytorch >= 2.0
|
178 |
+
- transformers >= 4.37.2
|
179 |
+
- CUDA >= 11.4
|
180 |
+
|
181 |
+
```shell
|
182 |
+
pip install -r requirements.txt
|
183 |
+
```
|
184 |
+
|
185 |
+
Optionally, we recommend installing Flash-Attention 2 to improve performance and reduce memory footprint.
|
186 |
+
|
187 |
+
>flash-attn >= 2.3.6
|
188 |
+
```shell
|
189 |
+
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
|
190 |
+
```
|
191 |
+
|
192 |
+
## 🤗 Transformers
|
193 |
+
### Demonstration of Base Model Inference
|
194 |
+
|
195 |
+
```python
|
196 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
197 |
+
from transformers.generation import GenerationConfig
|
198 |
+
|
199 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
200 |
+
|
201 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
202 |
+
MODEL_NAME_OR_PATH,
|
203 |
+
trust_remote_code=True)
|
204 |
+
|
205 |
+
model = AutoModelForCausalLM.from_pretrained(
|
206 |
+
MODEL_NAME_OR_PATH,
|
207 |
+
device_map="auto",
|
208 |
+
trust_remote_code=True)
|
209 |
+
|
210 |
+
generation_config = GenerationConfig.from_pretrained(
|
211 |
+
MODEL_NAME_OR_PATH,
|
212 |
+
trust_remote_code=True)
|
213 |
+
|
214 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
215 |
+
inputs = inputs.to(model.device)
|
216 |
+
|
217 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
218 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
219 |
+
```
|
220 |
+
### Demonstration of Chat Model Inference
|
221 |
+
|
222 |
+
```python
|
223 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
224 |
+
from transformers.generation import GenerationConfig
|
225 |
+
|
226 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
227 |
+
|
228 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
229 |
+
MODEL_NAME_OR_PATH,
|
230 |
+
trust_remote_code=True)
|
231 |
+
|
232 |
+
model = AutoModelForCausalLM.from_pretrained(
|
233 |
+
MODEL_NAME_OR_PATH,
|
234 |
+
device_map="auto",
|
235 |
+
trust_remote_code=True)
|
236 |
+
|
237 |
+
generation_config = GenerationConfig.from_pretrained(
|
238 |
+
MODEL_NAME_OR_PATH,
|
239 |
+
trust_remote_code=True)
|
240 |
+
|
241 |
+
messages = []
|
242 |
+
#round-1
|
243 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
244 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
245 |
+
messages.append({"role": "assistant", "content": response})
|
246 |
+
print(messages)
|
247 |
+
|
248 |
+
#round-2
|
249 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
250 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
251 |
+
messages.append({"role": "assistant", "content": response})
|
252 |
+
print(messages)
|
253 |
+
```
|
254 |
+
|
255 |
+
## 🤖 ModelScope
|
256 |
+
### Demonstration of Base Model Inference
|
257 |
+
|
258 |
+
```python
|
259 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
260 |
+
from modelscope import GenerationConfig
|
261 |
+
|
262 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
263 |
+
|
264 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
265 |
+
MODEL_NAME_OR_PATH,
|
266 |
+
trust_remote_code=True)
|
267 |
+
|
268 |
+
model = AutoModelForCausalLM.from_pretrained(
|
269 |
+
MODEL_NAME_OR_PATH,
|
270 |
+
device_map="auto",
|
271 |
+
trust_remote_code=True)
|
272 |
+
|
273 |
+
generation_config = GenerationConfig.from_pretrained(
|
274 |
+
MODEL_NAME_OR_PATH,
|
275 |
+
trust_remote_code=True)
|
276 |
+
|
277 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
278 |
+
inputs = inputs.to(model.device)
|
279 |
+
|
280 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
281 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
282 |
+
```
|
283 |
+
|
284 |
+
### Demonstration of Chat Model Inference
|
285 |
+
|
286 |
+
```python
|
287 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
288 |
+
from modelscope import GenerationConfig
|
289 |
+
|
290 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
291 |
+
|
292 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
293 |
+
MODEL_NAME_OR_PATH,
|
294 |
+
trust_remote_code=True)
|
295 |
+
|
296 |
+
model = AutoModelForCausalLM.from_pretrained(
|
297 |
+
MODEL_NAME_OR_PATH,
|
298 |
+
device_map="auto",
|
299 |
+
trust_remote_code=True)
|
300 |
+
|
301 |
+
generation_config = GenerationConfig.from_pretrained(
|
302 |
+
MODEL_NAME_OR_PATH,
|
303 |
+
trust_remote_code=True)
|
304 |
+
|
305 |
+
messages = []
|
306 |
+
#round-1
|
307 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
308 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
309 |
+
messages.append({"role": "assistant", "content": response})
|
310 |
+
print(messages)
|
311 |
+
|
312 |
+
#round-2
|
313 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
314 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
315 |
+
messages.append({"role": "assistant", "content": response})
|
316 |
+
print(messages)
|
317 |
+
```
|
318 |
+
|
319 |
+
## CLI Demo
|
320 |
+
Use terminal for command-line interface:
|
321 |
+
|
322 |
+
```shell
|
323 |
+
python cli_demo.py
|
324 |
+
```
|
325 |
+
<p align="center">
|
326 |
+
<img src="assets/cli_demo.gif" width="600" />
|
327 |
+
<p>
|
328 |
+
|
329 |
+
Note: for Mac users, `device = 'mps'` is not supported yet.
|
330 |
+
|
331 |
+
## Web Demo
|
332 |
+
|
333 |
+
```shell
|
334 |
+
streamlit run web_demo.py
|
335 |
+
```
|
336 |
+
<p align="center">
|
337 |
+
<img src="assets/web_demo.gif" width="600" />
|
338 |
+
<p>
|
339 |
+
|
340 |
+
## API Demo
|
341 |
+
Launch api:
|
342 |
+
```shell
|
343 |
+
python openai_api.py
|
344 |
+
```
|
345 |
+
|
346 |
+
Then request with parameters:
|
347 |
+
```shell
|
348 |
+
curl 'http://localhost:8360/v1/chat/completions' \
|
349 |
+
-H 'Content-Type: application/json' \
|
350 |
+
-d '{
|
351 |
+
"max_new_tokens": 200,
|
352 |
+
"do_sample": true,
|
353 |
+
"top_k": 0,
|
354 |
+
"top_p": 0.8,
|
355 |
+
"temperature": 1.0,
|
356 |
+
"repetition_penalty": 1.0,
|
357 |
+
"messages": [
|
358 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
359 |
+
{"role": "user", "content": "你好"}
|
360 |
+
]
|
361 |
+
}'
|
362 |
+
```
|
363 |
+
|
364 |
+
<br>
|
365 |
+
|
366 |
+
# Model Inference
|
367 |
+
## Quantization
|
368 |
+
We provide quantization schemes based on AutoGPTQ and release the Int4 quantization models.
|
369 |
+
|
370 |
+
## Deployment
|
371 |
+
### vLLM Installation
|
372 |
+
We recommend using `vLLM==0.3.3`.
|
373 |
+
|
374 |
+
If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with:
|
375 |
+
```shell
|
376 |
+
pip install vllm==0.3.3
|
377 |
+
```
|
378 |
+
|
379 |
+
Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html).
|
380 |
+
|
381 |
+
After installation, perform the following steps:
|
382 |
+
1. Copy `vllm/zhinao.py` into `vllm/model_executor/models` in your vllm installation directory (in python/conda env).
|
383 |
+
2. Copy `vllm/serving_chat.py` into `vllm/entrypoints/openai` in your vllm installation directory.
|
384 |
+
3. Then add a line in `vllm/model_executor/models/__init__.py`
|
385 |
+
|
386 |
+
```shell
|
387 |
+
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
388 |
+
```
|
389 |
+
|
390 |
+
### vLLM Service Start
|
391 |
+
|
392 |
+
Start the service:
|
393 |
+
```shell
|
394 |
+
python -m vllm.entrypoints.openai.api_server \
|
395 |
+
--served-model-name 360Zhinao2-7B-Chat-4K \
|
396 |
+
--model qihoo360/360Zhinao2-7B-Chat-4K \
|
397 |
+
--trust-remote-code \
|
398 |
+
--tensor-parallel-size 1 \
|
399 |
+
--max-model-len 4096 \
|
400 |
+
--host 0.0.0.0 \
|
401 |
+
--port 8360
|
402 |
+
```
|
403 |
+
|
404 |
+
Use curl to request the service:
|
405 |
+
```shell
|
406 |
+
curl http://localhost:8360/v1/chat/completions \
|
407 |
+
-H "Content-Type: application/json" \
|
408 |
+
-d '{
|
409 |
+
"model": "360Zhinao2-7B-Chat-4K",
|
410 |
+
"max_tokens": 200,
|
411 |
+
"top_k": -1,
|
412 |
+
"top_p": 0.8,
|
413 |
+
"temperature": 1.0,
|
414 |
+
"presence_penalty": 0.0,
|
415 |
+
"frequency_penalty": 0.0,
|
416 |
+
"messages": [
|
417 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
418 |
+
{"role": "user", "content": "你好"}
|
419 |
+
],
|
420 |
+
"stop": [
|
421 |
+
"<eod>",
|
422 |
+
"<|im_end|>",
|
423 |
+
"<|im_start|>"
|
424 |
+
]
|
425 |
+
}'
|
426 |
+
```
|
427 |
+
Use python to request the service:
|
428 |
+
```python
|
429 |
+
from openai import OpenAI
|
430 |
+
openai_api_key = "EMPTY"
|
431 |
+
openai_api_base = "http://localhost:8360/v1"
|
432 |
+
|
433 |
+
client = OpenAI(
|
434 |
+
api_key=openai_api_key,
|
435 |
+
base_url=openai_api_base,
|
436 |
+
)
|
437 |
+
|
438 |
+
chat_response = client.chat.completions.create(
|
439 |
+
model="360Zhinao2-7B-Chat-4K",
|
440 |
+
messages=[
|
441 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
442 |
+
{"role": "user", "content": "你好"},
|
443 |
+
],
|
444 |
+
stop=[
|
445 |
+
"<eod>",
|
446 |
+
"<|im_end|>",
|
447 |
+
"<|im_start|>"
|
448 |
+
],
|
449 |
+
presence_penalty=0.0,
|
450 |
+
frequency_penalty=0.0
|
451 |
+
)
|
452 |
+
print("Chat response:", chat_response)
|
453 |
+
```
|
454 |
+
|
455 |
+
> If you need to enable repetition penalty, we recommend setting `presence_penalty` and `frequency_penalty` instead of `repetition_penalty`.
|
456 |
+
|
457 |
+
|
458 |
+
<br>
|
459 |
+
|
460 |
+
# Model Finetune
|
461 |
+
## Training data
|
462 |
+
|
463 |
+
Training Data: `data/training_data_sample.json`. This example data has 10,000 rows sampled from [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) with converted format.
|
464 |
+
|
465 |
+
Data Format:
|
466 |
+
```json
|
467 |
+
[
|
468 |
+
{
|
469 |
+
"id": 1,
|
470 |
+
"conversations": [
|
471 |
+
{
|
472 |
+
"from": "system",
|
473 |
+
"value": "You are a helpful assistant."
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"from": "user",
|
477 |
+
"value": "您好啊"
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"from": "assistant",
|
481 |
+
"value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
|
482 |
+
}
|
483 |
+
]
|
484 |
+
}
|
485 |
+
]
|
486 |
+
```
|
487 |
+
## Finetuning scripts
|
488 |
+
```shell
|
489 |
+
set -x
|
490 |
+
|
491 |
+
HOSTFILE=hostfile
|
492 |
+
DS_CONFIG=./finetune/ds_config_zero2.json
|
493 |
+
|
494 |
+
# PARAMS
|
495 |
+
LR=5e-6
|
496 |
+
EPOCHS=3
|
497 |
+
MAX_LEN=4096
|
498 |
+
BATCH_SIZE=4
|
499 |
+
NUM_NODES=1
|
500 |
+
NUM_GPUS=8
|
501 |
+
MASTER_PORT=29500
|
502 |
+
|
503 |
+
IS_CONCAT=False # Whether to concatenate to maximum length (MAX_LEN)
|
504 |
+
|
505 |
+
DATA_PATH="./data/training_data_sample.json"
|
506 |
+
MODEL_PATH="qihoo360/360Zhinao2-7B-Base"
|
507 |
+
OUTPUT_DIR="./outputs/"
|
508 |
+
|
509 |
+
deepspeed --hostfile ${HOSTFILE} \
|
510 |
+
--master_port ${MASTER_PORT} \
|
511 |
+
--num_nodes ${NUM_NODES} \
|
512 |
+
--num_gpus ${NUM_GPUS} \
|
513 |
+
finetune.py \
|
514 |
+
--report_to "tensorboard" \
|
515 |
+
--data_path ${DATA_PATH} \
|
516 |
+
--model_name_or_path ${MODEL_PATH} \
|
517 |
+
--output_dir ${OUTPUT_DIR} \
|
518 |
+
--model_max_length ${MAX_LEN} \
|
519 |
+
--num_train_epochs ${EPOCHS} \
|
520 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
521 |
+
--gradient_accumulation_steps 1 \
|
522 |
+
--save_strategy steps \
|
523 |
+
--save_steps 200 \
|
524 |
+
--learning_rate ${LR} \
|
525 |
+
--lr_scheduler_type cosine \
|
526 |
+
--adam_beta1 0.9 \
|
527 |
+
--adam_beta2 0.95 \
|
528 |
+
--adam_epsilon 1e-8 \
|
529 |
+
--max_grad_norm 1.0 \
|
530 |
+
--weight_decay 0.1 \
|
531 |
+
--warmup_ratio 0.01 \
|
532 |
+
--gradient_checkpointing True \
|
533 |
+
--bf16 True \
|
534 |
+
--tf32 True \
|
535 |
+
--deepspeed ${DS_CONFIG} \
|
536 |
+
--is_concat ${IS_CONCAT} \
|
537 |
+
--logging_steps 1 \
|
538 |
+
--log_on_each_node False
|
539 |
+
```
|
540 |
+
```shell
|
541 |
+
bash finetune/ds_finetune.sh
|
542 |
+
```
|
543 |
+
- Configuring `HOSTFILE` switches between single-machine and multi-machine training.
|
544 |
+
- configuring `ds_config` switches between zero1, zero2 and zero3.
|
545 |
+
- `fp16, bf16` could configure mixed precision training. bf16 is recommended to be consistent with the pretrained model.
|
546 |
+
- `is_concat` configures whether the training data is concatenated or not.
|
547 |
+
|
548 |
+
<br>
|
549 |
+
|
550 |
+
# License
|
551 |
+
|
552 |
+
The source code of this repository follows the open-source license Apache 2.0.
|
553 |
+
|
554 |
+
360Zhinao open-source models support free commercial use. It is not necessary for you to submit a request for commercial usage.
|
README_CN.md
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- qihoo360
|
9 |
+
- 奇虎360
|
10 |
+
- zhinao
|
11 |
+
- 360Zhinao
|
12 |
+
- pretrain
|
13 |
+
---
|
14 |
+
|
15 |
+
<p align="left">
|
16 |
+
中文 |   <a href="./README.md">English</a></a> 
|
17 |
+
</p>
|
18 |
+
<br>
|
19 |
+
|
20 |
+
<div align="center">
|
21 |
+
<h1>
|
22 |
+
360智脑
|
23 |
+
</h1>
|
24 |
+
</div>
|
25 |
+
<div align="center">
|
26 |
+
🤗 <a href="https://huggingface.co/qihoo360">Hugging Face</a>   |   
|
27 |
+
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   
|
28 |
+
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>  
|
29 |
+
</div>
|
30 |
+
<br>
|
31 |
+
<p align="center">
|
32 |
+
欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
|
33 |
+
</p>
|
34 |
+
|
35 |
+
<br>
|
36 |
+
|
37 |
+
# 模型介绍
|
38 |
+
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
|
39 |
+
- **360Zhinao2-7B-Base**
|
40 |
+
- **360Zhinao2-7B-Chat-4K**
|
41 |
+
- **360Zhinao2-7B-Chat-32K**
|
42 |
+
- **360Zhinao2-7B-Chat-360K**
|
43 |
+
|
44 |
+
360智脑大模型特点如下:
|
45 |
+
- **基础模型**:采⽤当前主流的两阶段训练⽅法,第⼀阶段采用cosine学习率总共训练10T
|
46 |
+
token,第二阶段我们加⼤了⾼质量数据的占⽐,训练了100B⾼质量token,学习率LR直接decay到0。**360Zhinao2-7B总共训练数据量达10.1T token**。
|
47 |
+
- **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。
|
48 |
+
|
49 |
+
<br>
|
50 |
+
|
51 |
+
# 更新信息
|
52 |
+
- [2024.11.18] 🔥🔥🔥我们发布了360Zhinao2-7B,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
|
53 |
+
- [2024.05.23] 我们发布了360Zhinao-search以及360Zhinao-1.8B-Reranking两个模型,分别在[C-MTEB 榜单](https://huggingface.co/spaces/mteb/leaderboard)的Retrieval和Reranking任务上排名第一。
|
54 |
+
- [2024.05.20] 我们将llama3的窗口长度扩展到360k并发布了**llama3-8B-360Zhinao-360k-Instruct**<a href="https://huggingface.co/qihoo360/llama3-8B-360Zhinao-360k-Instruct">🤗</a>
|
55 |
+
- [2024.04.12] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
|
56 |
+
技术报告详见[arXiv](https://arxiv.org/abs/2405.13386)。
|
57 |
+
|
58 |
+
<br>
|
59 |
+
|
60 |
+
# 目录
|
61 |
+
- [下载地址](#下载地址)
|
62 |
+
- [模型评估](#模型评估)
|
63 |
+
- [快速开始](#快速开始)
|
64 |
+
- [模型推理](#模型推理)
|
65 |
+
- [模型微调](#模型微调)
|
66 |
+
- [许可证](#许可证)
|
67 |
+
|
68 |
+
<br>
|
69 |
+
|
70 |
+
# 下载地址
|
71 |
+
本次发布版本和下载链接见下表:
|
72 |
+
| Size | Model | BF16 | Int4|
|
73 |
+
|:-:|-|:-:|:-:|
|
74 |
+
| 7B | 360Zhinao2-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Base">🤗</a> | |
|
75 |
+
| 7B | 360Zhinao2-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-4K-Int4">🤗</a> |
|
76 |
+
| 7B | 360Zhinao2-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-32K-Int4">🤗</a> |
|
77 |
+
| 7B | 360Zhinao2-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao2-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao2-7B-Chat-360K-Int4">🤗</a> |
|
78 |
+
|
79 |
+
<br>
|
80 |
+
|
81 |
+
# 模型评估
|
82 |
+
我们使⽤了开源⼯具opencompass对模型进⾏评估,对⽐了近半年国内外开源的10B以下模型,
|
83 |
+
360Zhinao2-7B具备较强的竞争⼒。360Zhinao2-7B在CEval(中⽂
|
84 |
+
考试)、C3(中⽂阅读理解)、lcsts(中⽂短⽂本摘要)等中⽂benchmark上表现不俗,中⽂
|
85 |
+
benchmark均分排名第⼀。在挑战性的竞赛数学数据集math上,同样排名第⼀。**360Zhinao2-7B模
|
86 |
+
型在中⽂处理能⼒、复杂数学推理能⼒两个⽅⾯,具备优势。**
|
87 |
+
|
88 |
+
<table>
|
89 |
+
<tr>
|
90 |
+
<td>Type</td><td>Datasets</td><td>language</td><td>glm4-9b</td><td>Qwen2.5-7B</td><td>internlm2.5-7b</td><td>Yi1.5-9B</td><td>gemma2-9b</td><td>Llama3.1-8B</td><td>360Zhinao2-7B</td>
|
91 |
+
</tr>
|
92 |
+
<tr>
|
93 |
+
<td rowspan="5">Exam</td><td>ceval</td><td>zh</td><td>75.83</td><td>81.41</td><td>77.71</td><td>73.51</td><td>56.36</td><td>51.67</td><td><strong>83.04</strong></td>
|
94 |
+
</tr>
|
95 |
+
<tr>
|
96 |
+
<td>mmlu</td><td>en</td><td>75.5</td><td>75.5</td><td>71.55</td><td>71.43</td><td>72.22</td><td>66.75</td><td>67.84</td>
|
97 |
+
</tr>
|
98 |
+
<tr>
|
99 |
+
<td>cmmlu</td><td>zh</td><td>74.24</td><td>81.79</td><td>78.77</td><td>74.2</td><td>58.89</td><td>52.49</td><td>73.8</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>ARC-c</td><td>en</td><td>94.92</td><td>80</td><td>85.08</td><td>87.46</td><td>77.63</td><td>80.68</td><td>87.12</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td>ARC-e</td><td>en</td><td>98.41</td><td>84.83</td><td>95.24</td><td>94.53</td><td>78.84</td><td>89.77</td><td>92.77</td>
|
106 |
+
</tr>
|
107 |
+
<tr>
|
108 |
+
<td rowspan="2">Language</td><td>WiC</td><td>en</td><td>51.57</td><td>52.82</td><td>50.78</td><td>50.63</td><td>50.47</td><td>50</td><td>49.84</td>
|
109 |
+
</tr>
|
110 |
+
<tr>
|
111 |
+
<td>WSC</td><td>en</td><td>68.27</td><td>68.27</td><td>69.23</td><td>66.35</td><td>68.27</td><td>67.31</td><td>65.38</td>
|
112 |
+
</tr>
|
113 |
+
<tr>
|
114 |
+
<td rowspan="2">Knowledge</td>
|
115 |
+
<td>BoolQ</td><td>en</td><td>81.8</td><td>83.88</td><td>89.51</td><td>84.46</td><td>85.6</td><td>82.2</td><td>88.29</td>
|
116 |
+
</tr>
|
117 |
+
<tr>
|
118 |
+
<td>commonsense_qa</td><td>en</td><td>71.17</td><td>73.22</td><td>68.55</td><td>71.58</td><td>68.47</td><td>71.25</td><td>69.78</td>
|
119 |
+
</tr>
|
120 |
+
<tr>
|
121 |
+
<td rowspan="6">Understanding</td>
|
122 |
+
<td>C3</td><td>zh</td><td>91.51</td><td>92</td><td>93.04</td><td>85.86</td><td>81.64</td><td>83.51</td><td><strong>93.26</strong></td>
|
123 |
+
</tr>
|
124 |
+
<tr>
|
125 |
+
<td>race-middle</td><td>en</td><td>91.99</td><td>91.02</td><td>92.06</td><td>91.16</td><td>88.09</td><td>81.69</td><td>90.46</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>race-high</td><td>en</td><td>90.71</td><td>87.91</td><td>90.08</td><td>88.34</td><td>82.08</td><td>78.73</td><td>86.74</td>
|
129 |
+
</tr>
|
130 |
+
<tr>
|
131 |
+
<td>lcsts</td><td>zh</td><td>18.29</td><td>15.82</td><td>15.96</td><td>16.49</td><td>10.62</td><td>17.29</td><td><strong>18.61</strong></td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>eprstmt-dev</td><td>zh</td><td>91.88</td><td>86.88</td><td>91.25</td><td>91.88</td><td>48.12</td><td>83.12</td><td>90</td>
|
135 |
+
</tr>
|
136 |
+
<tr>
|
137 |
+
<td>lambada</td><td>en</td><td>71.67</td><td>71.14</td><td>69.98</td><td>70.64</td><td>75.43</td><td>74.23</td><td>72.56</td>
|
138 |
+
</tr>
|
139 |
+
<tr>
|
140 |
+
<td rowspan="3">Reasoning</td>
|
141 |
+
<td>hellaswag</td><td>en</td><td>70.25</td><td>72.76</td><td>70.38</td><td>71.55</td><td>66.83</td><td>74.65</td><td>71.49</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>siqa</td><td>en</td><td>81.73</td><td>72.52</td><td>78.97</td><td>76.2</td><td>58.96</td><td>64.18</td><td>77.12</td>
|
145 |
+
</tr>
|
146 |
+
<tr>
|
147 |
+
<td>bbh</td><td>en</td><td>73.68</td><td>54.63</td><td>59.43</td><td>67.86</td><td>68.45</td><td>59.9</td><td>46.54</td>
|
148 |
+
</tr>
|
149 |
+
<tr>
|
150 |
+
<td rowspan="2">Code</td>
|
151 |
+
<td>humaneval</td><td>en</td><td>69.51</td><td>75</td><td>60.37</td><td>26.22</td><td>5.49</td><td>27.44</td><td>60.98</td>
|
152 |
+
</tr>
|
153 |
+
<tr>
|
154 |
+
<td>mbpp</td><td>en</td><td>60</td><td>60</td><td>43.6</td><td>56.8</td><td>51.2</td><td>42.6</td><td>54</td>
|
155 |
+
</tr>
|
156 |
+
<tr>
|
157 |
+
<td rowspan="2">Math</td>
|
158 |
+
<td>math</td><td>en</td><td>26.86</td><td>38</td><td>27.14</td><td>27.06</td><td>28.52</td><td>15.32</td><td><strong>38.34</strong></td>
|
159 |
+
</tr>
|
160 |
+
<tr>
|
161 |
+
<td>gsm8k</td><td>en</td><td>78.54</td><td>79.76</td><td>52.54</td><td>71.11</td><td>73.09</td><td>56.25</td><td>75.51</td>
|
162 |
+
</tr>
|
163 |
+
<tr>
|
164 |
+
<td rowspan="2">Overall</td>
|
165 |
+
<td>avg_zh</td><td></td><td>70.35</td><td>71.58</td><td>71.35</td><td>68.39</td><td>51.13</td><td>57.62</td><td><strong>71.74</strong></td>
|
166 |
+
</tr>
|
167 |
+
<tr>
|
168 |
+
<td>avg_all</td><td></td><td>73.11</td><td>71.78</td><td>69.60</td><td>68.88</td><td>61.60</td><td>62.32</td><td>70.61</td>
|
169 |
+
</tr>
|
170 |
+
</table>
|
171 |
+
|
172 |
+
## 基础模型
|
173 |
+
|
174 |
+
# 快速开始
|
175 |
+
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao2-7B-Base和360Zhinao2-7B-Chat
|
176 |
+
|
177 |
+
## 依赖安装
|
178 |
+
- python 3.8 and above
|
179 |
+
- pytorch 2.0 and above
|
180 |
+
- transformers 4.37.2 and above
|
181 |
+
- CUDA 11.4 and above are recommended.
|
182 |
+
|
183 |
+
```shell
|
184 |
+
pip install -r requirements.txt
|
185 |
+
```
|
186 |
+
我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目)
|
187 |
+
|
188 |
+
>flash-attn >= 2.3.6
|
189 |
+
```shell
|
190 |
+
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
|
191 |
+
```
|
192 |
+
|
193 |
+
|
194 |
+
## 🤗 Transformers
|
195 |
+
### Base模型推理
|
196 |
+
|
197 |
+
此代码演示使用transformers快速使用360Zhinao2-7B-Base模型进行推理
|
198 |
+
```python
|
199 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
200 |
+
from transformers.generation import GenerationConfig
|
201 |
+
|
202 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
203 |
+
|
204 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
205 |
+
MODEL_NAME_OR_PATH,
|
206 |
+
trust_remote_code=True)
|
207 |
+
|
208 |
+
model = AutoModelForCausalLM.from_pretrained(
|
209 |
+
MODEL_NAME_OR_PATH,
|
210 |
+
device_map="auto",
|
211 |
+
trust_remote_code=True)
|
212 |
+
|
213 |
+
generation_config = GenerationConfig.from_pretrained(
|
214 |
+
MODEL_NAME_OR_PATH,
|
215 |
+
trust_remote_code=True)
|
216 |
+
|
217 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
218 |
+
inputs = inputs.to(model.device)
|
219 |
+
|
220 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
221 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
222 |
+
```
|
223 |
+
|
224 |
+
### Chat模型推理
|
225 |
+
|
226 |
+
此代码演示使用transformers快速使用360Zhinao2-7B-Chat-4K模型进行推理
|
227 |
+
```python
|
228 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
229 |
+
from transformers.generation import GenerationConfig
|
230 |
+
|
231 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
232 |
+
|
233 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
234 |
+
MODEL_NAME_OR_PATH,
|
235 |
+
trust_remote_code=True)
|
236 |
+
|
237 |
+
model = AutoModelForCausalLM.from_pretrained(
|
238 |
+
MODEL_NAME_OR_PATH,
|
239 |
+
device_map="auto",
|
240 |
+
trust_remote_code=True)
|
241 |
+
|
242 |
+
generation_config = GenerationConfig.from_pretrained(
|
243 |
+
MODEL_NAME_OR_PATH,
|
244 |
+
trust_remote_code=True)
|
245 |
+
|
246 |
+
messages = []
|
247 |
+
#round-1
|
248 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
249 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
250 |
+
messages.append({"role": "assistant", "content": response})
|
251 |
+
print(messages)
|
252 |
+
|
253 |
+
#round-2
|
254 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
255 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
256 |
+
messages.append({"role": "assistant", "content": response})
|
257 |
+
print(messages)
|
258 |
+
```
|
259 |
+
|
260 |
+
## 🤖 ModelScope
|
261 |
+
### Base模型推理
|
262 |
+
|
263 |
+
此代码演示使用ModelScope快速使用360Zhinao2-7B-Base模型进行推理
|
264 |
+
|
265 |
+
|
266 |
+
```python
|
267 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
268 |
+
from modelscope import GenerationConfig
|
269 |
+
|
270 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Base"
|
271 |
+
|
272 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
273 |
+
MODEL_NAME_OR_PATH,
|
274 |
+
trust_remote_code=True)
|
275 |
+
|
276 |
+
model = AutoModelForCausalLM.from_pretrained(
|
277 |
+
MODEL_NAME_OR_PATH,
|
278 |
+
device_map="auto",
|
279 |
+
trust_remote_code=True)
|
280 |
+
|
281 |
+
generation_config = GenerationConfig.from_pretrained(
|
282 |
+
MODEL_NAME_OR_PATH,
|
283 |
+
trust_remote_code=True)
|
284 |
+
|
285 |
+
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
|
286 |
+
inputs = inputs.to(model.device)
|
287 |
+
|
288 |
+
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
|
289 |
+
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
290 |
+
```
|
291 |
+
|
292 |
+
### Chat模型推理
|
293 |
+
|
294 |
+
此代码演示使用ModelScope快速使用360Zhinao2-7B-Chat-4K模型进行推理
|
295 |
+
```python
|
296 |
+
from modelscope import AutoModelForCausalLM, AutoTokenizer
|
297 |
+
from modelscope import GenerationConfig
|
298 |
+
|
299 |
+
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao2-7B-Chat-4K"
|
300 |
+
|
301 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
302 |
+
MODEL_NAME_OR_PATH,
|
303 |
+
trust_remote_code=True)
|
304 |
+
|
305 |
+
model = AutoModelForCausalLM.from_pretrained(
|
306 |
+
MODEL_NAME_OR_PATH,
|
307 |
+
device_map="auto",
|
308 |
+
trust_remote_code=True)
|
309 |
+
|
310 |
+
generation_config = GenerationConfig.from_pretrained(
|
311 |
+
MODEL_NAME_OR_PATH,
|
312 |
+
trust_remote_code=True)
|
313 |
+
|
314 |
+
messages = []
|
315 |
+
#round-1
|
316 |
+
messages.append({"role": "user", "content": "介绍一下刘德华"})
|
317 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
318 |
+
messages.append({"role": "assistant", "content": response})
|
319 |
+
print(messages)
|
320 |
+
|
321 |
+
#round-2
|
322 |
+
messages.append({"role": "user", "content": "他有什么代表作?"})
|
323 |
+
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
|
324 |
+
messages.append({"role": "assistant", "content": response})
|
325 |
+
print(messages)
|
326 |
+
```
|
327 |
+
|
328 |
+
## 终端 Demo
|
329 |
+
可使用终端交互实现快速体验
|
330 |
+
```shell
|
331 |
+
python cli_demo.py
|
332 |
+
```
|
333 |
+
<p align="center">
|
334 |
+
<img src="assets/cli_demo.gif" width="600" />
|
335 |
+
<p>
|
336 |
+
|
337 |
+
注:我们尚未支持Mac上`device = 'mps'`。
|
338 |
+
|
339 |
+
## 网页 Demo
|
340 |
+
也可使用网页交互实现快速体验
|
341 |
+
```shell
|
342 |
+
streamlit run web_demo.py
|
343 |
+
```
|
344 |
+
<p align="center">
|
345 |
+
<img src="assets/web_demo.gif" width="600" />
|
346 |
+
<p>
|
347 |
+
|
348 |
+
## API Demo
|
349 |
+
启动命令
|
350 |
+
```shell
|
351 |
+
python openai_api.py
|
352 |
+
```
|
353 |
+
|
354 |
+
请求参数
|
355 |
+
```shell
|
356 |
+
curl 'http://localhost:8360/v1/chat/completions' \
|
357 |
+
-H 'Content-Type: application/json' \
|
358 |
+
-d '{
|
359 |
+
"max_new_tokens": 200,
|
360 |
+
"do_sample": true,
|
361 |
+
"top_k": 0,
|
362 |
+
"top_p": 0.8,
|
363 |
+
"temperature": 1.0,
|
364 |
+
"repetition_penalty": 1.0,
|
365 |
+
"messages": [
|
366 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
367 |
+
{"role": "user", "content": "你好"}
|
368 |
+
]
|
369 |
+
}'
|
370 |
+
```
|
371 |
+
|
372 |
+
<br>
|
373 |
+
|
374 |
+
# 模型推理
|
375 |
+
## 模型量化
|
376 |
+
我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
|
377 |
+
|
378 |
+
## 模型部署
|
379 |
+
### vLLM安装环境
|
380 |
+
如希望部署及加速推理,我们建议你使用 `vLLM==0.3.3`。
|
381 |
+
|
382 |
+
如果你使用**CUDA 12.1和PyTorch 2.1**,可以直接使用以下命令安装vLLM。
|
383 |
+
```shell
|
384 |
+
pip install vllm==0.3.3
|
385 |
+
```
|
386 |
+
|
387 |
+
否则请参考vLLM官方的[安装说明](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
|
388 |
+
|
389 |
+
>安装完成后,还需要以下操作~
|
390 |
+
1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
|
391 |
+
2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
|
392 |
+
3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码
|
393 |
+
|
394 |
+
```shell
|
395 |
+
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
|
396 |
+
```
|
397 |
+
|
398 |
+
### vLLM服务启动
|
399 |
+
|
400 |
+
启动服务
|
401 |
+
```shell
|
402 |
+
python -m vllm.entrypoints.openai.api_server \
|
403 |
+
--served-model-name 360Zhinao2-7B-Chat-4K \
|
404 |
+
--model qihoo360/360Zhinao2-7B-Chat-4K \
|
405 |
+
--trust-remote-code \
|
406 |
+
--tensor-parallel-size 1 \
|
407 |
+
--max-model-len 4096 \
|
408 |
+
--host 0.0.0.0 \
|
409 |
+
--port 8360
|
410 |
+
```
|
411 |
+
|
412 |
+
使用curl请求服务
|
413 |
+
```shell
|
414 |
+
curl http://localhost:8360/v1/chat/completions \
|
415 |
+
-H "Content-Type: application/json" \
|
416 |
+
-d '{
|
417 |
+
"model": "360Zhinao2-7B-Chat-4K",
|
418 |
+
"max_tokens": 200,
|
419 |
+
"top_k": -1,
|
420 |
+
"top_p": 0.8,
|
421 |
+
"temperature": 1.0,
|
422 |
+
"presence_penalty": 0.0,
|
423 |
+
"frequency_penalty": 0.0,
|
424 |
+
"messages": [
|
425 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
426 |
+
{"role": "user", "content": "你好"}
|
427 |
+
],
|
428 |
+
"stop": [
|
429 |
+
"<eod>",
|
430 |
+
"<|im_end|>",
|
431 |
+
"<|im_start|>"
|
432 |
+
]
|
433 |
+
}'
|
434 |
+
```
|
435 |
+
使用python请求服务
|
436 |
+
```python
|
437 |
+
from openai import OpenAI
|
438 |
+
# Set OpenAI's API key and API base to use vLLM's API server.
|
439 |
+
openai_api_key = "EMPTY"
|
440 |
+
openai_api_base = "http://localhost:8360/v1"
|
441 |
+
|
442 |
+
client = OpenAI(
|
443 |
+
api_key=openai_api_key,
|
444 |
+
base_url=openai_api_base,
|
445 |
+
)
|
446 |
+
|
447 |
+
chat_response = client.chat.completions.create(
|
448 |
+
model="360Zhinao2-7B-Chat-4K",
|
449 |
+
messages=[
|
450 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
451 |
+
{"role": "user", "content": "你好"},
|
452 |
+
],
|
453 |
+
stop=[
|
454 |
+
"<eod>",
|
455 |
+
"<|im_end|>",
|
456 |
+
"<|im_start|>"
|
457 |
+
],
|
458 |
+
presence_penalty=0.0,
|
459 |
+
frequency_penalty=0.0
|
460 |
+
)
|
461 |
+
print("Chat response:", chat_response)
|
462 |
+
```
|
463 |
+
|
464 |
+
> 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
|
465 |
+
|
466 |
+
<br>
|
467 |
+
|
468 |
+
# 模型微调
|
469 |
+
## 训练数据
|
470 |
+
|
471 |
+
我们提供了微调训练样例数据 data/test.json,该样例数据是从 [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) 采样出 1 万条,并且做了格式转换。
|
472 |
+
|
473 |
+
数据格式:
|
474 |
+
```json
|
475 |
+
[
|
476 |
+
{
|
477 |
+
"id": 1,
|
478 |
+
"conversations": [
|
479 |
+
{
|
480 |
+
"from": "system",
|
481 |
+
"value": "You are a helpful assistant."
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"from": "user",
|
485 |
+
"value": "您好啊"
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"from": "assistant",
|
489 |
+
"value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
|
490 |
+
}
|
491 |
+
]
|
492 |
+
}
|
493 |
+
]
|
494 |
+
```
|
495 |
+
|
496 |
+
## 微调训练
|
497 |
+
训练脚本如下:
|
498 |
+
```shell
|
499 |
+
set -x
|
500 |
+
|
501 |
+
HOSTFILE=hostfile
|
502 |
+
DS_CONFIG=./finetune/ds_config_zero2.json
|
503 |
+
|
504 |
+
# PARAMS
|
505 |
+
LR=5e-6
|
506 |
+
EPOCHS=3
|
507 |
+
MAX_LEN=4096
|
508 |
+
BATCH_SIZE=4
|
509 |
+
NUM_NODES=1
|
510 |
+
NUM_GPUS=8
|
511 |
+
MASTER_PORT=29500
|
512 |
+
|
513 |
+
IS_CONCAT=False # 是否数据拼接到最大长度(MAX_LEN)
|
514 |
+
|
515 |
+
DATA_PATH="./data/training_data_sample.json"
|
516 |
+
MODEL_PATH="qihoo360/360Zhinao2-7B-Base"
|
517 |
+
OUTPUT_DIR="./outputs/"
|
518 |
+
|
519 |
+
deepspeed --hostfile ${HOSTFILE} \
|
520 |
+
--master_port ${MASTER_PORT} \
|
521 |
+
--num_nodes ${NUM_NODES} \
|
522 |
+
--num_gpus ${NUM_GPUS} \
|
523 |
+
finetune.py \
|
524 |
+
--report_to "tensorboard" \
|
525 |
+
--data_path ${DATA_PATH} \
|
526 |
+
--model_name_or_path ${MODEL_PATH} \
|
527 |
+
--output_dir ${OUTPUT_DIR} \
|
528 |
+
--model_max_length ${MAX_LEN} \
|
529 |
+
--num_train_epochs ${EPOCHS} \
|
530 |
+
--per_device_train_batch_size ${BATCH_SIZE} \
|
531 |
+
--gradient_accumulation_steps 1 \
|
532 |
+
--save_strategy steps \
|
533 |
+
--save_steps 200 \
|
534 |
+
--learning_rate ${LR} \
|
535 |
+
--lr_scheduler_type cosine \
|
536 |
+
--adam_beta1 0.9 \
|
537 |
+
--adam_beta2 0.95 \
|
538 |
+
--adam_epsilon 1e-8 \
|
539 |
+
--max_grad_norm 1.0 \
|
540 |
+
--weight_decay 0.1 \
|
541 |
+
--warmup_ratio 0.01 \
|
542 |
+
--gradient_checkpointing True \
|
543 |
+
--bf16 True \
|
544 |
+
--tf32 True \
|
545 |
+
--deepspeed ${DS_CONFIG} \
|
546 |
+
--is_concat ${IS_CONCAT} \
|
547 |
+
--logging_steps 1 \
|
548 |
+
--log_on_each_node False
|
549 |
+
```
|
550 |
+
```shell
|
551 |
+
bash finetune/ds_finetune.sh
|
552 |
+
```
|
553 |
+
- 可通过配置hostfile,实现单机、多机训练。
|
554 |
+
- 可通过配置ds_config,实现zero2、zero3。
|
555 |
+
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
|
556 |
+
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
|
557 |
+
|
558 |
+
<br>
|
559 |
+
|
560 |
+
# 许可证
|
561 |
+
|
562 |
+
本仓库源码遵循开源许可证Apache 2.0。
|
563 |
+
|
564 |
+
360智脑开源模型支持免费商用,无需向我们进行特殊申请。
|
config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ZhinaoForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.1,
|
6 |
+
"attn_dropout_prob": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_zhinao.ZhinaoConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_zhinao.ZhinaoForCausalLM"
|
10 |
+
},
|
11 |
+
"bf16": true,
|
12 |
+
"emb_dropout_prob": 0.1,
|
13 |
+
"flah-attn_version": "2.5.5",
|
14 |
+
"fp16": false,
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"initializer_range": 0.01,
|
18 |
+
"intermediate_size": 13056,
|
19 |
+
"log_logit": false,
|
20 |
+
"max_position_embeddings": 36000,
|
21 |
+
"message": {
|
22 |
+
"from": "",
|
23 |
+
"model_size": "7B-gqa"
|
24 |
+
},
|
25 |
+
"model_max_length": 36000,
|
26 |
+
"model_type": "zhinao",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"quantization_config": {
|
31 |
+
"batch_size": 1,
|
32 |
+
"bits": 4,
|
33 |
+
"block_name_to_quantize": null,
|
34 |
+
"cache_block_outputs": true,
|
35 |
+
"damp_percent": 0.01,
|
36 |
+
"dataset": null,
|
37 |
+
"desc_act": false,
|
38 |
+
"exllama_config": {
|
39 |
+
"version": 1
|
40 |
+
},
|
41 |
+
"group_size": 128,
|
42 |
+
"max_input_length": null,
|
43 |
+
"model_seqlen": null,
|
44 |
+
"module_name_preceding_first_block": null,
|
45 |
+
"modules_in_block_to_quantize": null,
|
46 |
+
"pad_token_id": null,
|
47 |
+
"quant_method": "gptq",
|
48 |
+
"sym": true,
|
49 |
+
"tokenizer": null,
|
50 |
+
"true_sequential": true,
|
51 |
+
"use_cuda_fp16": false,
|
52 |
+
"use_exllama": true
|
53 |
+
},
|
54 |
+
"rms_norm_eps": 1e-05,
|
55 |
+
"rope_scaling": null,
|
56 |
+
"rope_theta": 1000000.0,
|
57 |
+
"switch": 0,
|
58 |
+
"tie_word_embeddings": false,
|
59 |
+
"torch_dtype": "bfloat16",
|
60 |
+
"transformers_version": "4.43.0",
|
61 |
+
"use_cache": false,
|
62 |
+
"use_flash_attn": true,
|
63 |
+
"use_focal": false,
|
64 |
+
"use_loss_weight": false,
|
65 |
+
"use_pack_loss": false,
|
66 |
+
"vocab_size": 158464
|
67 |
+
}
|
configuration_zhinao.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 360zhinao and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
# This code is built upon Huggingface's transformers repository.
|
3 |
+
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class ZhinaoConfig(PretrainedConfig):
|
13 |
+
|
14 |
+
model_type = "zhinao"
|
15 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
vocab_size=32000,
|
20 |
+
hidden_size=4096,
|
21 |
+
intermediate_size=11008,
|
22 |
+
num_hidden_layers=32,
|
23 |
+
num_attention_heads=32,
|
24 |
+
num_key_value_heads=None,
|
25 |
+
hidden_act="silu",
|
26 |
+
max_position_embeddings=2048,
|
27 |
+
initializer_range=0.02,
|
28 |
+
rms_norm_eps=1e-6,
|
29 |
+
use_cache=True,
|
30 |
+
pad_token_id=None,
|
31 |
+
bos_token_id=None,
|
32 |
+
eos_token_id=None,
|
33 |
+
tie_word_embeddings=False,
|
34 |
+
rope_theta=10000.0,
|
35 |
+
rope_scaling=None,
|
36 |
+
bf16 = False,
|
37 |
+
fp16 = False,
|
38 |
+
use_flash_attn="auto",
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
self.vocab_size = vocab_size
|
42 |
+
self.max_position_embeddings = max_position_embeddings
|
43 |
+
self.hidden_size = hidden_size
|
44 |
+
self.intermediate_size = intermediate_size
|
45 |
+
self.num_hidden_layers = num_hidden_layers
|
46 |
+
self.num_attention_heads = num_attention_heads
|
47 |
+
|
48 |
+
# for backward compatibility
|
49 |
+
if num_key_value_heads is None:
|
50 |
+
num_key_value_heads = num_attention_heads
|
51 |
+
|
52 |
+
self.num_key_value_heads = num_key_value_heads
|
53 |
+
self.hidden_act = hidden_act
|
54 |
+
self.initializer_range = initializer_range
|
55 |
+
self.rms_norm_eps = rms_norm_eps
|
56 |
+
self.use_cache = use_cache
|
57 |
+
self.rope_theta = rope_theta
|
58 |
+
self.rope_scaling = rope_scaling
|
59 |
+
self._rope_scaling_validation()
|
60 |
+
|
61 |
+
self.bf16 = bf16
|
62 |
+
self.fp16 = fp16
|
63 |
+
self.use_flash_attn = use_flash_attn
|
64 |
+
|
65 |
+
super().__init__(
|
66 |
+
pad_token_id=pad_token_id,
|
67 |
+
bos_token_id=bos_token_id,
|
68 |
+
eos_token_id=eos_token_id,
|
69 |
+
tie_word_embeddings=tie_word_embeddings,
|
70 |
+
**kwargs,
|
71 |
+
)
|
72 |
+
|
73 |
+
def _rope_scaling_validation(self):
|
74 |
+
"""
|
75 |
+
Validate the `rope_scaling` configuration.
|
76 |
+
"""
|
77 |
+
if self.rope_scaling is None:
|
78 |
+
return
|
79 |
+
|
80 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
81 |
+
raise ValueError(
|
82 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
83 |
+
f"got {self.rope_scaling}"
|
84 |
+
)
|
85 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
86 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
87 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "ntk"]:
|
88 |
+
raise ValueError(
|
89 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
90 |
+
)
|
91 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
92 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
158326,
|
6 |
+
158332,
|
7 |
+
158333
|
8 |
+
],
|
9 |
+
"max_new_tokens": 1024,
|
10 |
+
"pad_token_id": 158326,
|
11 |
+
"top_k": 0,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.43.0"
|
14 |
+
}
|
generation_utils.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from queue import Queue
|
5 |
+
from typing import Tuple, List, Union, Iterable
|
6 |
+
from transformers.utils import logging, add_start_docstrings
|
7 |
+
from transformers.generation.logits_process import LogitsProcessor, LOGITS_PROCESSOR_INPUTS_DOCSTRING, LogitsProcessorList
|
8 |
+
|
9 |
+
|
10 |
+
def make_context(model, tokenizer,
|
11 |
+
messages: List[dict],
|
12 |
+
system: str = "You are a helpful assistant.",
|
13 |
+
max_new_tokens: int=0,
|
14 |
+
):
|
15 |
+
|
16 |
+
max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
|
17 |
+
max_input_length = model.config.model_max_length - max_new_tokens
|
18 |
+
|
19 |
+
im_start_id = [tokenizer.im_start_id]
|
20 |
+
im_end_id = [tokenizer.im_end_id]
|
21 |
+
nl_tokens = tokenizer.encode("\n")
|
22 |
+
|
23 |
+
def _tokenize_str(role, content):
|
24 |
+
return tokenizer.encode(role, allowed_special=set()) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
25 |
+
|
26 |
+
def _parse_messages(messages):
|
27 |
+
system, query, history = "", "", []
|
28 |
+
## system
|
29 |
+
if messages[0]["role"] == "system":
|
30 |
+
system = messages[0]["content"]
|
31 |
+
messages = messages[1:]
|
32 |
+
## query
|
33 |
+
assert messages[-1]["role"] == "user"
|
34 |
+
query = messages[-1]["content"]
|
35 |
+
messages = messages[:-1]
|
36 |
+
## history
|
37 |
+
assert len(messages) % 2 == 0
|
38 |
+
for i in range(0, len(messages), 2):
|
39 |
+
assert messages[i]["role"] == "user" and messages[i+1]["role"] == "assistant"
|
40 |
+
history.append([messages[i]["content"], messages[i+1]["content"]])
|
41 |
+
|
42 |
+
return system, query, history
|
43 |
+
|
44 |
+
_system, query, history = _parse_messages(messages)
|
45 |
+
|
46 |
+
## system
|
47 |
+
system_text = _system if _system != "" else system
|
48 |
+
system_tokens = []
|
49 |
+
if system_text:
|
50 |
+
system_tokens = im_start_id + _tokenize_str("system", system_text) + im_end_id + nl_tokens
|
51 |
+
|
52 |
+
## query
|
53 |
+
query_tokens = im_start_id + _tokenize_str("user", query) + im_end_id + nl_tokens
|
54 |
+
## final assistant
|
55 |
+
final_tokens = im_start_id + tokenizer.encode("assistant", allowed_special=set()) + nl_tokens
|
56 |
+
|
57 |
+
## max_history_tokens
|
58 |
+
max_history_length = max_input_length - len(system_tokens) - len(query_tokens) - len(final_tokens)
|
59 |
+
|
60 |
+
## history
|
61 |
+
context_tokens = []
|
62 |
+
for turn_query, turn_response in reversed(history):
|
63 |
+
## query tokens
|
64 |
+
history_query_tokens = im_start_id + _tokenize_str("user", turn_query) + im_end_id + nl_tokens
|
65 |
+
## answer tokens
|
66 |
+
histroy_response_tokens = im_start_id + _tokenize_str("assistant", turn_response) + im_end_id + nl_tokens
|
67 |
+
## this round tokens
|
68 |
+
next_context_tokens = history_query_tokens + histroy_response_tokens
|
69 |
+
## concat
|
70 |
+
current_context_size = len(next_context_tokens) + len(context_tokens)
|
71 |
+
if current_context_size < max_history_length:
|
72 |
+
context_tokens = next_context_tokens + context_tokens
|
73 |
+
else:
|
74 |
+
break
|
75 |
+
input_tokens = system_tokens + context_tokens + query_tokens + final_tokens
|
76 |
+
|
77 |
+
return torch.LongTensor([input_tokens]).to(model.device)
|
78 |
+
|
79 |
+
|
80 |
+
class TextIterStreamer:
|
81 |
+
def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
|
82 |
+
self.tokenizer = tokenizer
|
83 |
+
self.skip_prompt = skip_prompt
|
84 |
+
self.skip_special_tokens = skip_special_tokens
|
85 |
+
self.tokens = []
|
86 |
+
self.text_queue = Queue()
|
87 |
+
self.next_tokens_are_prompt = True
|
88 |
+
|
89 |
+
def put(self, value):
|
90 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
91 |
+
self.next_tokens_are_prompt = False
|
92 |
+
else:
|
93 |
+
if len(value.shape) > 1:
|
94 |
+
value = value[0]
|
95 |
+
self.tokens.extend(value.tolist())
|
96 |
+
tokens_str = self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens, errors='ignore')
|
97 |
+
self.text_queue.put(tokens_str)
|
98 |
+
|
99 |
+
def end(self):
|
100 |
+
self.text_queue.put(None)
|
101 |
+
|
102 |
+
def __iter__(self):
|
103 |
+
return self
|
104 |
+
|
105 |
+
def __next__(self):
|
106 |
+
value = self.text_queue.get()
|
107 |
+
if value is None:
|
108 |
+
raise StopIteration()
|
109 |
+
else:
|
110 |
+
return value
|
111 |
+
|
112 |
+
|
113 |
+
class OutputRepetitionPenaltyLogitsProcessor(LogitsProcessor):
|
114 |
+
r"""
|
115 |
+
[`OutputLogitsProcessor`] that prevents the repetition of previous tokens through a penalty. This penalty is applied at
|
116 |
+
most once per token. Note that, for decoder-only models like most LLMs, the considered tokens include the prompt.
|
117 |
+
|
118 |
+
In the original [paper](https://arxiv.org/pdf/1909.05858.pdf), the authors suggest the use of a penalty of around
|
119 |
+
1.2 to achieve a good balance between truthful generation and lack of repetition. To penalize and reduce
|
120 |
+
repetition, use `penalty` values above 1.0, where a higher value penalizes more strongly. To reward and encourage
|
121 |
+
repetition, use `penalty` values between 0.0 and 1.0, where a lower value rewards more strongly.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
penalty (`float`):
|
125 |
+
The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 penalizes previously generated
|
126 |
+
tokens. Between 0.0 and 1.0 rewards previously generated tokens.
|
127 |
+
"""
|
128 |
+
|
129 |
+
def __init__(self, input_length: int,
|
130 |
+
presence_penalties: float = 1.0,
|
131 |
+
frequency_penalties: float = 0,
|
132 |
+
repetition_penalties: float = 0):
|
133 |
+
if not (repetition_penalties > 0):
|
134 |
+
raise ValueError(f"`repetition_penalties` has to be a strictly positive float, but is {repetition_penalties}")
|
135 |
+
if not ( (frequency_penalties >= -2) and (frequency_penalties <= 2) ):
|
136 |
+
raise ValueError(f"`frequency_penalties` has to be [-2, 2], but is {frequency_penalties}")
|
137 |
+
if not ( (presence_penalties >= -2) and (presence_penalties <= 2) ):
|
138 |
+
raise ValueError(f"`presence_penalties` has to be [-2, 2], but is {presence_penalties}")
|
139 |
+
|
140 |
+
self.repetition_penalties = repetition_penalties
|
141 |
+
self.frequency_penalties = frequency_penalties
|
142 |
+
self.presence_penalties = presence_penalties
|
143 |
+
self.input_length = input_length
|
144 |
+
|
145 |
+
def _get_bin_counts_and_mask(
|
146 |
+
self,
|
147 |
+
tokens: torch.Tensor,
|
148 |
+
vocab_size: int,
|
149 |
+
num_seqs: int,
|
150 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
151 |
+
# Compute the bin counts for the tokens.
|
152 |
+
# vocab_size + 1 for padding.
|
153 |
+
bin_counts = torch.zeros((num_seqs, vocab_size + 1),
|
154 |
+
dtype=torch.long,
|
155 |
+
device=tokens.device)
|
156 |
+
bin_counts.scatter_add_(1, tokens, torch.ones_like(tokens))
|
157 |
+
bin_counts = bin_counts[:, :vocab_size]
|
158 |
+
mask = bin_counts > 0
|
159 |
+
|
160 |
+
return bin_counts, mask
|
161 |
+
|
162 |
+
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
163 |
+
def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
|
164 |
+
prompt_tokens_tensor = input_ids[:, :self.input_length+1]
|
165 |
+
output_tokens_tensor = input_ids[:, self.input_length+1:]
|
166 |
+
|
167 |
+
num_seqs, vocab_size = logits.shape
|
168 |
+
_, prompt_mask = self._get_bin_counts_and_mask(
|
169 |
+
prompt_tokens_tensor, vocab_size, num_seqs)
|
170 |
+
output_bin_counts, output_mask = self._get_bin_counts_and_mask(
|
171 |
+
output_tokens_tensor, vocab_size, num_seqs)
|
172 |
+
|
173 |
+
repetition_penalties = torch.Tensor([self.repetition_penalties]).to(logits.device)
|
174 |
+
frequency_penalties = torch.Tensor([self.frequency_penalties]).to(logits.device)
|
175 |
+
presence_penalties = torch.Tensor([self.presence_penalties]).to(logits.device)
|
176 |
+
|
177 |
+
repetition_penalties = repetition_penalties[:, None].repeat(1, vocab_size)
|
178 |
+
repetition_penalties[~(prompt_mask | output_mask)] = 1.0
|
179 |
+
logits = torch.where(logits > 0, logits / repetition_penalties,
|
180 |
+
logits * repetition_penalties)
|
181 |
+
|
182 |
+
# We follow the definition in OpenAI API.
|
183 |
+
# Refer to https://platform.openai.com/docs/api-reference/parameter-details
|
184 |
+
logits -= frequency_penalties.unsqueeze_(dim=1) * output_bin_counts
|
185 |
+
logits -= presence_penalties.unsqueeze_(dim=1) * output_mask
|
186 |
+
|
187 |
+
return logits
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52b12d153551878d04df39a19284f6c471a6ab9dea89fe50fca31076d2e57780
|
3 |
+
size 3980040984
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ecac75a40e638322347691d268e6c6454c8a33992afddf4d96f50db101b69de
|
3 |
+
size 1985497488
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5965455360
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.0.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.0.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.0.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.0.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.0.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.0.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.0.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.0.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.0.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.1.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.1.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.1.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.1.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.1.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.1.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.1.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.1.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.1.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.1.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.1.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.1.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.1.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.1.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.1.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.1.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.1.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.10.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.10.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.10.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.10.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.10.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.10.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.10.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.10.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.10.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.10.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.10.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.10.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.10.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.10.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.10.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.10.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.10.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.10.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.10.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.10.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.10.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.11.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.11.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.11.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.11.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.11.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.11.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.11.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.11.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.11.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.11.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.11.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.11.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.11.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.11.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.11.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.11.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.11.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.11.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.11.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.11.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.11.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.12.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.12.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.12.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.12.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.12.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.12.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.12.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.12.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.12.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.12.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.12.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.12.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.12.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.12.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.12.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.12.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.12.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.12.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.12.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.12.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.12.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.13.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.13.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.13.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.13.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.13.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.13.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.13.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.13.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.13.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.13.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.13.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.13.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.13.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.13.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.13.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.13.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.13.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.13.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.13.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.13.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.13.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.14.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.14.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.14.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.14.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.14.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.14.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.14.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.14.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.14.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.14.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.14.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.14.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.14.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.14.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.14.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.14.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.14.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.14.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.14.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.14.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.14.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.15.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.15.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.15.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.15.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.15.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.15.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.15.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.15.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.15.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.15.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.15.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.15.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.15.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.15.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.15.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.15.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.15.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.15.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.15.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.15.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.15.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.16.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.16.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.16.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.16.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.16.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.16.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.16.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.16.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.16.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.16.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.16.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.16.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.16.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.16.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.16.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.16.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.16.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.16.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.16.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.16.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.16.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.17.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.17.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.17.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.17.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.17.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.17.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.17.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.17.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.17.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.17.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.17.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.17.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.17.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.17.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.17.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.17.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.17.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.17.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.17.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.17.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.17.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.18.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.18.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.18.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.18.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.18.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.18.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.18.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.18.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.18.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.18.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.18.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.18.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.18.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.18.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.18.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.18.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.18.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.18.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.18.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.18.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.18.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.19.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.19.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.19.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.19.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.19.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.19.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.19.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.19.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.19.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.19.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.19.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.19.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.19.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.19.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.19.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.19.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.19.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.19.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.19.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.19.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.19.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.2.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.2.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.2.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.2.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.2.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.2.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.2.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.2.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.2.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.2.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.2.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.2.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
297 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"model.layers.2.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
299 |
+
"model.layers.2.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
300 |
+
"model.layers.2.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
301 |
+
"model.layers.2.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
302 |
+
"model.layers.2.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
303 |
+
"model.layers.2.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
304 |
+
"model.layers.2.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
305 |
+
"model.layers.2.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
306 |
+
"model.layers.2.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.20.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.20.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.20.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.20.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.20.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.20.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.20.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.20.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.20.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.20.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.20.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.20.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
320 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"model.layers.20.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
322 |
+
"model.layers.20.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
323 |
+
"model.layers.20.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
324 |
+
"model.layers.20.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
325 |
+
"model.layers.20.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
326 |
+
"model.layers.20.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
327 |
+
"model.layers.20.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
328 |
+
"model.layers.20.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
329 |
+
"model.layers.20.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
330 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"model.layers.21.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
332 |
+
"model.layers.21.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
333 |
+
"model.layers.21.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
334 |
+
"model.layers.21.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
335 |
+
"model.layers.21.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
336 |
+
"model.layers.21.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
337 |
+
"model.layers.21.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
338 |
+
"model.layers.21.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.21.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.21.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.21.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.21.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
343 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
344 |
+
"model.layers.21.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
345 |
+
"model.layers.21.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
346 |
+
"model.layers.21.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
347 |
+
"model.layers.21.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
348 |
+
"model.layers.21.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
349 |
+
"model.layers.21.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
350 |
+
"model.layers.21.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
351 |
+
"model.layers.21.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
352 |
+
"model.layers.21.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
353 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
354 |
+
"model.layers.22.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
355 |
+
"model.layers.22.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
356 |
+
"model.layers.22.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
357 |
+
"model.layers.22.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
358 |
+
"model.layers.22.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
359 |
+
"model.layers.22.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
360 |
+
"model.layers.22.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
361 |
+
"model.layers.22.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
362 |
+
"model.layers.22.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
363 |
+
"model.layers.22.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
364 |
+
"model.layers.22.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
365 |
+
"model.layers.22.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
366 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"model.layers.22.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.22.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.22.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.22.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.22.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.22.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.22.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.22.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.22.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.23.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.23.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.23.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.23.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.23.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.23.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.23.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.23.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.23.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.23.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.23.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.23.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.23.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.23.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.23.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.23.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.23.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.23.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.23.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.23.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.23.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.24.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.24.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.24.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.24.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.24.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.24.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.24.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.24.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.24.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.24.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.24.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.24.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.24.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.24.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.24.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.24.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.24.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.24.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.24.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.24.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.24.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
423 |
+
"model.layers.25.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.25.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.25.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.25.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.25.mlp.gate_proj.g_idx": "model-00002-of-00002.safetensors",
|
428 |
+
"model.layers.25.mlp.gate_proj.qweight": "model-00002-of-00002.safetensors",
|
429 |
+
"model.layers.25.mlp.gate_proj.qzeros": "model-00002-of-00002.safetensors",
|
430 |
+
"model.layers.25.mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
|
431 |
+
"model.layers.25.mlp.up_proj.g_idx": "model-00002-of-00002.safetensors",
|
432 |
+
"model.layers.25.mlp.up_proj.qweight": "model-00002-of-00002.safetensors",
|
433 |
+
"model.layers.25.mlp.up_proj.qzeros": "model-00002-of-00002.safetensors",
|
434 |
+
"model.layers.25.mlp.up_proj.scales": "model-00002-of-00002.safetensors",
|
435 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
436 |
+
"model.layers.25.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.25.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.25.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.25.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.25.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
441 |
+
"model.layers.25.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
442 |
+
"model.layers.25.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
443 |
+
"model.layers.25.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
444 |
+
"model.layers.25.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
445 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
446 |
+
"model.layers.26.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
447 |
+
"model.layers.26.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
448 |
+
"model.layers.26.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
449 |
+
"model.layers.26.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
450 |
+
"model.layers.26.mlp.gate_proj.g_idx": "model-00002-of-00002.safetensors",
|
451 |
+
"model.layers.26.mlp.gate_proj.qweight": "model-00002-of-00002.safetensors",
|
452 |
+
"model.layers.26.mlp.gate_proj.qzeros": "model-00002-of-00002.safetensors",
|
453 |
+
"model.layers.26.mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
|
454 |
+
"model.layers.26.mlp.up_proj.g_idx": "model-00002-of-00002.safetensors",
|
455 |
+
"model.layers.26.mlp.up_proj.qweight": "model-00002-of-00002.safetensors",
|
456 |
+
"model.layers.26.mlp.up_proj.qzeros": "model-00002-of-00002.safetensors",
|
457 |
+
"model.layers.26.mlp.up_proj.scales": "model-00002-of-00002.safetensors",
|
458 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
459 |
+
"model.layers.26.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
460 |
+
"model.layers.26.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
461 |
+
"model.layers.26.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
462 |
+
"model.layers.26.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
463 |
+
"model.layers.26.self_attn.qkv_proj.bias": "model-00002-of-00002.safetensors",
|
464 |
+
"model.layers.26.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
465 |
+
"model.layers.26.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
466 |
+
"model.layers.26.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
467 |
+
"model.layers.26.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
468 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
469 |
+
"model.layers.27.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
470 |
+
"model.layers.27.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
471 |
+
"model.layers.27.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
472 |
+
"model.layers.27.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
473 |
+
"model.layers.27.mlp.gate_proj.g_idx": "model-00002-of-00002.safetensors",
|
474 |
+
"model.layers.27.mlp.gate_proj.qweight": "model-00002-of-00002.safetensors",
|
475 |
+
"model.layers.27.mlp.gate_proj.qzeros": "model-00002-of-00002.safetensors",
|
476 |
+
"model.layers.27.mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
|
477 |
+
"model.layers.27.mlp.up_proj.g_idx": "model-00002-of-00002.safetensors",
|
478 |
+
"model.layers.27.mlp.up_proj.qweight": "model-00002-of-00002.safetensors",
|
479 |
+
"model.layers.27.mlp.up_proj.qzeros": "model-00002-of-00002.safetensors",
|
480 |
+
"model.layers.27.mlp.up_proj.scales": "model-00002-of-00002.safetensors",
|
481 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
482 |
+
"model.layers.27.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
483 |
+
"model.layers.27.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
484 |
+
"model.layers.27.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
485 |
+
"model.layers.27.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
486 |
+
"model.layers.27.self_attn.qkv_proj.bias": "model-00002-of-00002.safetensors",
|
487 |
+
"model.layers.27.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
488 |
+
"model.layers.27.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
489 |
+
"model.layers.27.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
490 |
+
"model.layers.27.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
491 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
492 |
+
"model.layers.28.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
493 |
+
"model.layers.28.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
494 |
+
"model.layers.28.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
495 |
+
"model.layers.28.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
496 |
+
"model.layers.28.mlp.gate_proj.g_idx": "model-00002-of-00002.safetensors",
|
497 |
+
"model.layers.28.mlp.gate_proj.qweight": "model-00002-of-00002.safetensors",
|
498 |
+
"model.layers.28.mlp.gate_proj.qzeros": "model-00002-of-00002.safetensors",
|
499 |
+
"model.layers.28.mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
|
500 |
+
"model.layers.28.mlp.up_proj.g_idx": "model-00002-of-00002.safetensors",
|
501 |
+
"model.layers.28.mlp.up_proj.qweight": "model-00002-of-00002.safetensors",
|
502 |
+
"model.layers.28.mlp.up_proj.qzeros": "model-00002-of-00002.safetensors",
|
503 |
+
"model.layers.28.mlp.up_proj.scales": "model-00002-of-00002.safetensors",
|
504 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
505 |
+
"model.layers.28.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
506 |
+
"model.layers.28.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
507 |
+
"model.layers.28.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
508 |
+
"model.layers.28.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
509 |
+
"model.layers.28.self_attn.qkv_proj.bias": "model-00002-of-00002.safetensors",
|
510 |
+
"model.layers.28.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
511 |
+
"model.layers.28.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
512 |
+
"model.layers.28.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
513 |
+
"model.layers.28.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
514 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
515 |
+
"model.layers.29.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
516 |
+
"model.layers.29.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
517 |
+
"model.layers.29.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
518 |
+
"model.layers.29.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
519 |
+
"model.layers.29.mlp.gate_proj.g_idx": "model-00002-of-00002.safetensors",
|
520 |
+
"model.layers.29.mlp.gate_proj.qweight": "model-00002-of-00002.safetensors",
|
521 |
+
"model.layers.29.mlp.gate_proj.qzeros": "model-00002-of-00002.safetensors",
|
522 |
+
"model.layers.29.mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
|
523 |
+
"model.layers.29.mlp.up_proj.g_idx": "model-00002-of-00002.safetensors",
|
524 |
+
"model.layers.29.mlp.up_proj.qweight": "model-00002-of-00002.safetensors",
|
525 |
+
"model.layers.29.mlp.up_proj.qzeros": "model-00002-of-00002.safetensors",
|
526 |
+
"model.layers.29.mlp.up_proj.scales": "model-00002-of-00002.safetensors",
|
527 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
528 |
+
"model.layers.29.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
529 |
+
"model.layers.29.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
530 |
+
"model.layers.29.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
531 |
+
"model.layers.29.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
532 |
+
"model.layers.29.self_attn.qkv_proj.bias": "model-00002-of-00002.safetensors",
|
533 |
+
"model.layers.29.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
534 |
+
"model.layers.29.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
535 |
+
"model.layers.29.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
536 |
+
"model.layers.29.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
537 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
538 |
+
"model.layers.3.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
539 |
+
"model.layers.3.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
540 |
+
"model.layers.3.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
541 |
+
"model.layers.3.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
542 |
+
"model.layers.3.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
543 |
+
"model.layers.3.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
544 |
+
"model.layers.3.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
545 |
+
"model.layers.3.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
546 |
+
"model.layers.3.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
547 |
+
"model.layers.3.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
548 |
+
"model.layers.3.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
549 |
+
"model.layers.3.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
550 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
551 |
+
"model.layers.3.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
552 |
+
"model.layers.3.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
553 |
+
"model.layers.3.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
554 |
+
"model.layers.3.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
555 |
+
"model.layers.3.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
556 |
+
"model.layers.3.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
557 |
+
"model.layers.3.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
558 |
+
"model.layers.3.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
559 |
+
"model.layers.3.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
560 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
561 |
+
"model.layers.30.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
562 |
+
"model.layers.30.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
563 |
+
"model.layers.30.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
564 |
+
"model.layers.30.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
565 |
+
"model.layers.30.mlp.gate_proj.g_idx": "model-00002-of-00002.safetensors",
|
566 |
+
"model.layers.30.mlp.gate_proj.qweight": "model-00002-of-00002.safetensors",
|
567 |
+
"model.layers.30.mlp.gate_proj.qzeros": "model-00002-of-00002.safetensors",
|
568 |
+
"model.layers.30.mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
|
569 |
+
"model.layers.30.mlp.up_proj.g_idx": "model-00002-of-00002.safetensors",
|
570 |
+
"model.layers.30.mlp.up_proj.qweight": "model-00002-of-00002.safetensors",
|
571 |
+
"model.layers.30.mlp.up_proj.qzeros": "model-00002-of-00002.safetensors",
|
572 |
+
"model.layers.30.mlp.up_proj.scales": "model-00002-of-00002.safetensors",
|
573 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
574 |
+
"model.layers.30.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
575 |
+
"model.layers.30.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
576 |
+
"model.layers.30.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
577 |
+
"model.layers.30.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
578 |
+
"model.layers.30.self_attn.qkv_proj.bias": "model-00002-of-00002.safetensors",
|
579 |
+
"model.layers.30.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
580 |
+
"model.layers.30.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
581 |
+
"model.layers.30.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
582 |
+
"model.layers.30.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
583 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
584 |
+
"model.layers.31.mlp.down_proj.g_idx": "model-00002-of-00002.safetensors",
|
585 |
+
"model.layers.31.mlp.down_proj.qweight": "model-00002-of-00002.safetensors",
|
586 |
+
"model.layers.31.mlp.down_proj.qzeros": "model-00002-of-00002.safetensors",
|
587 |
+
"model.layers.31.mlp.down_proj.scales": "model-00002-of-00002.safetensors",
|
588 |
+
"model.layers.31.mlp.gate_proj.g_idx": "model-00002-of-00002.safetensors",
|
589 |
+
"model.layers.31.mlp.gate_proj.qweight": "model-00002-of-00002.safetensors",
|
590 |
+
"model.layers.31.mlp.gate_proj.qzeros": "model-00002-of-00002.safetensors",
|
591 |
+
"model.layers.31.mlp.gate_proj.scales": "model-00002-of-00002.safetensors",
|
592 |
+
"model.layers.31.mlp.up_proj.g_idx": "model-00002-of-00002.safetensors",
|
593 |
+
"model.layers.31.mlp.up_proj.qweight": "model-00002-of-00002.safetensors",
|
594 |
+
"model.layers.31.mlp.up_proj.qzeros": "model-00002-of-00002.safetensors",
|
595 |
+
"model.layers.31.mlp.up_proj.scales": "model-00002-of-00002.safetensors",
|
596 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
597 |
+
"model.layers.31.self_attn.o_proj.g_idx": "model-00002-of-00002.safetensors",
|
598 |
+
"model.layers.31.self_attn.o_proj.qweight": "model-00002-of-00002.safetensors",
|
599 |
+
"model.layers.31.self_attn.o_proj.qzeros": "model-00002-of-00002.safetensors",
|
600 |
+
"model.layers.31.self_attn.o_proj.scales": "model-00002-of-00002.safetensors",
|
601 |
+
"model.layers.31.self_attn.qkv_proj.bias": "model-00002-of-00002.safetensors",
|
602 |
+
"model.layers.31.self_attn.qkv_proj.g_idx": "model-00002-of-00002.safetensors",
|
603 |
+
"model.layers.31.self_attn.qkv_proj.qweight": "model-00002-of-00002.safetensors",
|
604 |
+
"model.layers.31.self_attn.qkv_proj.qzeros": "model-00002-of-00002.safetensors",
|
605 |
+
"model.layers.31.self_attn.qkv_proj.scales": "model-00002-of-00002.safetensors",
|
606 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
607 |
+
"model.layers.4.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
608 |
+
"model.layers.4.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
609 |
+
"model.layers.4.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
610 |
+
"model.layers.4.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
611 |
+
"model.layers.4.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
612 |
+
"model.layers.4.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
613 |
+
"model.layers.4.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
614 |
+
"model.layers.4.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
615 |
+
"model.layers.4.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
616 |
+
"model.layers.4.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
617 |
+
"model.layers.4.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
618 |
+
"model.layers.4.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
619 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
620 |
+
"model.layers.4.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
621 |
+
"model.layers.4.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
622 |
+
"model.layers.4.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
623 |
+
"model.layers.4.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
624 |
+
"model.layers.4.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
625 |
+
"model.layers.4.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
626 |
+
"model.layers.4.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
627 |
+
"model.layers.4.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
628 |
+
"model.layers.4.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
629 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
630 |
+
"model.layers.5.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
631 |
+
"model.layers.5.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
632 |
+
"model.layers.5.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
633 |
+
"model.layers.5.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
634 |
+
"model.layers.5.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
635 |
+
"model.layers.5.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
636 |
+
"model.layers.5.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
637 |
+
"model.layers.5.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
638 |
+
"model.layers.5.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
639 |
+
"model.layers.5.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
640 |
+
"model.layers.5.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
641 |
+
"model.layers.5.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
642 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
643 |
+
"model.layers.5.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
644 |
+
"model.layers.5.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
645 |
+
"model.layers.5.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
646 |
+
"model.layers.5.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
647 |
+
"model.layers.5.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
648 |
+
"model.layers.5.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
649 |
+
"model.layers.5.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
650 |
+
"model.layers.5.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
651 |
+
"model.layers.5.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
652 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
653 |
+
"model.layers.6.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
654 |
+
"model.layers.6.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
655 |
+
"model.layers.6.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
656 |
+
"model.layers.6.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
657 |
+
"model.layers.6.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
658 |
+
"model.layers.6.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
659 |
+
"model.layers.6.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
660 |
+
"model.layers.6.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
661 |
+
"model.layers.6.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
662 |
+
"model.layers.6.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
663 |
+
"model.layers.6.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
664 |
+
"model.layers.6.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
665 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
666 |
+
"model.layers.6.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
667 |
+
"model.layers.6.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
668 |
+
"model.layers.6.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
669 |
+
"model.layers.6.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
670 |
+
"model.layers.6.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
671 |
+
"model.layers.6.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
672 |
+
"model.layers.6.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
673 |
+
"model.layers.6.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
674 |
+
"model.layers.6.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
675 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
676 |
+
"model.layers.7.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
677 |
+
"model.layers.7.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
678 |
+
"model.layers.7.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
679 |
+
"model.layers.7.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
680 |
+
"model.layers.7.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
681 |
+
"model.layers.7.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
682 |
+
"model.layers.7.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
683 |
+
"model.layers.7.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
684 |
+
"model.layers.7.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
685 |
+
"model.layers.7.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
686 |
+
"model.layers.7.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
687 |
+
"model.layers.7.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
688 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
689 |
+
"model.layers.7.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
690 |
+
"model.layers.7.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
691 |
+
"model.layers.7.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
692 |
+
"model.layers.7.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
693 |
+
"model.layers.7.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
694 |
+
"model.layers.7.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
695 |
+
"model.layers.7.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
696 |
+
"model.layers.7.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
697 |
+
"model.layers.7.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
698 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
699 |
+
"model.layers.8.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
700 |
+
"model.layers.8.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
701 |
+
"model.layers.8.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
702 |
+
"model.layers.8.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
703 |
+
"model.layers.8.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
704 |
+
"model.layers.8.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
705 |
+
"model.layers.8.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
706 |
+
"model.layers.8.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
707 |
+
"model.layers.8.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
708 |
+
"model.layers.8.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
709 |
+
"model.layers.8.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
710 |
+
"model.layers.8.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
711 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
712 |
+
"model.layers.8.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
713 |
+
"model.layers.8.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
714 |
+
"model.layers.8.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
715 |
+
"model.layers.8.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
716 |
+
"model.layers.8.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
717 |
+
"model.layers.8.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
718 |
+
"model.layers.8.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
719 |
+
"model.layers.8.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
720 |
+
"model.layers.8.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
721 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
722 |
+
"model.layers.9.mlp.down_proj.g_idx": "model-00001-of-00002.safetensors",
|
723 |
+
"model.layers.9.mlp.down_proj.qweight": "model-00001-of-00002.safetensors",
|
724 |
+
"model.layers.9.mlp.down_proj.qzeros": "model-00001-of-00002.safetensors",
|
725 |
+
"model.layers.9.mlp.down_proj.scales": "model-00001-of-00002.safetensors",
|
726 |
+
"model.layers.9.mlp.gate_proj.g_idx": "model-00001-of-00002.safetensors",
|
727 |
+
"model.layers.9.mlp.gate_proj.qweight": "model-00001-of-00002.safetensors",
|
728 |
+
"model.layers.9.mlp.gate_proj.qzeros": "model-00001-of-00002.safetensors",
|
729 |
+
"model.layers.9.mlp.gate_proj.scales": "model-00001-of-00002.safetensors",
|
730 |
+
"model.layers.9.mlp.up_proj.g_idx": "model-00001-of-00002.safetensors",
|
731 |
+
"model.layers.9.mlp.up_proj.qweight": "model-00001-of-00002.safetensors",
|
732 |
+
"model.layers.9.mlp.up_proj.qzeros": "model-00001-of-00002.safetensors",
|
733 |
+
"model.layers.9.mlp.up_proj.scales": "model-00001-of-00002.safetensors",
|
734 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
735 |
+
"model.layers.9.self_attn.o_proj.g_idx": "model-00001-of-00002.safetensors",
|
736 |
+
"model.layers.9.self_attn.o_proj.qweight": "model-00001-of-00002.safetensors",
|
737 |
+
"model.layers.9.self_attn.o_proj.qzeros": "model-00001-of-00002.safetensors",
|
738 |
+
"model.layers.9.self_attn.o_proj.scales": "model-00001-of-00002.safetensors",
|
739 |
+
"model.layers.9.self_attn.qkv_proj.bias": "model-00001-of-00002.safetensors",
|
740 |
+
"model.layers.9.self_attn.qkv_proj.g_idx": "model-00001-of-00002.safetensors",
|
741 |
+
"model.layers.9.self_attn.qkv_proj.qweight": "model-00001-of-00002.safetensors",
|
742 |
+
"model.layers.9.self_attn.qkv_proj.qzeros": "model-00001-of-00002.safetensors",
|
743 |
+
"model.layers.9.self_attn.qkv_proj.scales": "model-00001-of-00002.safetensors",
|
744 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
745 |
+
}
|
746 |
+
}
|
modeling_zhinao.py
ADDED
@@ -0,0 +1,1094 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 360zhinao and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
# This code is built upon Huggingface's transformers repository.
|
3 |
+
|
4 |
+
import math
|
5 |
+
import warnings
|
6 |
+
from threading import Thread
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
14 |
+
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
from transformers.generation.utils import GenerationConfig
|
20 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
21 |
+
from .configuration_zhinao import ZhinaoConfig
|
22 |
+
from .generation_utils import TextIterStreamer, make_context, OutputRepetitionPenaltyLogitsProcessor
|
23 |
+
|
24 |
+
|
25 |
+
try:
|
26 |
+
from flash_attn import flash_attn_varlen_func
|
27 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
28 |
+
except:
|
29 |
+
flash_attn_varlen_func = None
|
30 |
+
index_first_axis, pad_input, unpad_input = None, None, None
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
_CONFIG_FOR_DOC = "ZhinaoConfig"
|
36 |
+
|
37 |
+
|
38 |
+
def _get_unpad_data(attention_mask):
|
39 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
40 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
41 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
42 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
43 |
+
return (
|
44 |
+
indices,
|
45 |
+
cu_seqlens,
|
46 |
+
max_seqlen_in_batch,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
def calc_logits_metric(logits, log_topk=True):
|
51 |
+
""""output logit metric"""
|
52 |
+
result = {
|
53 |
+
f"_max": round(torch.max(logits).item(), 7),
|
54 |
+
f"_var": round(torch.var(logits).item(), 7),
|
55 |
+
}
|
56 |
+
result["_mean"] = round(torch.mean(logits).item(), 3)
|
57 |
+
result["_min"] = round(torch.min(logits).item(), 3)
|
58 |
+
result["_max-mean"] = round(result["_max"] - result["_mean"], 3)
|
59 |
+
|
60 |
+
if log_topk:
|
61 |
+
topk = 10
|
62 |
+
topk_avg_logits = logits.topk(topk, dim=-1).values.view(-1, topk)
|
63 |
+
topk_avg_logits = torch.mean(topk_avg_logits, dim=0).tolist()
|
64 |
+
result["_topk"] = topk_avg_logits[:topk]
|
65 |
+
|
66 |
+
# probs
|
67 |
+
log_probs = F.softmax(logits, dim=-1)
|
68 |
+
|
69 |
+
topk = 3
|
70 |
+
topk_avg_probs = log_probs.topk(topk, dim=-1).values.view(-1, topk)
|
71 |
+
topk_avg_probs = torch.mean(topk_avg_probs, dim=0).tolist()
|
72 |
+
log_probs = None
|
73 |
+
|
74 |
+
for i in range(topk):
|
75 |
+
result[f"_prob_topk{i+1}"] = round(topk_avg_probs[i], 3)
|
76 |
+
return result
|
77 |
+
|
78 |
+
|
79 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
80 |
+
def _make_causal_mask(
|
81 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
82 |
+
):
|
83 |
+
"""
|
84 |
+
Make causal mask used for bi-directional self-attention.
|
85 |
+
"""
|
86 |
+
bsz, tgt_len = input_ids_shape
|
87 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
88 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
89 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
90 |
+
mask = mask.to(dtype)
|
91 |
+
|
92 |
+
if past_key_values_length > 0:
|
93 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
94 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
95 |
+
|
96 |
+
|
97 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
98 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
99 |
+
"""
|
100 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
101 |
+
"""
|
102 |
+
bsz, src_len = mask.size()
|
103 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
104 |
+
|
105 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
106 |
+
|
107 |
+
inverted_mask = 1.0 - expanded_mask
|
108 |
+
|
109 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
110 |
+
|
111 |
+
|
112 |
+
class ZhinaoRMSNorm(nn.Module):
|
113 |
+
def __init__(self, hidden_size, eps=1e-6):
|
114 |
+
"""
|
115 |
+
ZhinaoRMSNorm is equivalent to T5LayerNorm
|
116 |
+
"""
|
117 |
+
super().__init__()
|
118 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
119 |
+
self.variance_epsilon = eps
|
120 |
+
|
121 |
+
def forward(self, hidden_states):
|
122 |
+
input_dtype = hidden_states.dtype
|
123 |
+
hidden_states = hidden_states.to(torch.float32)
|
124 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
125 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
126 |
+
return self.weight * hidden_states.to(input_dtype)
|
127 |
+
|
128 |
+
|
129 |
+
class ZhinaoRotaryEmbedding(torch.nn.Module):
|
130 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
131 |
+
super().__init__()
|
132 |
+
|
133 |
+
self.dim = dim
|
134 |
+
self.max_position_embeddings = max_position_embeddings
|
135 |
+
self.base = base
|
136 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
137 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
138 |
+
|
139 |
+
# Build here to make `torch.jit.trace` work.
|
140 |
+
self._set_cos_sin_cache(
|
141 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
142 |
+
)
|
143 |
+
|
144 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
145 |
+
self.max_seq_len_cached = seq_len
|
146 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
147 |
+
|
148 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
149 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
150 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
151 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
152 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
153 |
+
|
154 |
+
def forward(self, x, seq_len=None):
|
155 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
156 |
+
if seq_len > self.max_seq_len_cached:
|
157 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
158 |
+
|
159 |
+
return (
|
160 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
161 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
class ZhinaoLinearScalingRotaryEmbedding(ZhinaoRotaryEmbedding):
|
166 |
+
"""ZhinaoRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
167 |
+
|
168 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
169 |
+
self.scaling_factor = scaling_factor
|
170 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
171 |
+
|
172 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
173 |
+
self.max_seq_len_cached = seq_len
|
174 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
175 |
+
t = t / self.scaling_factor
|
176 |
+
|
177 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
178 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
179 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
180 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
181 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
182 |
+
|
183 |
+
|
184 |
+
class ZhinaoDynamicNTKScalingRotaryEmbedding(ZhinaoRotaryEmbedding):
|
185 |
+
"""ZhinaoRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
186 |
+
|
187 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
188 |
+
self.scaling_factor = scaling_factor
|
189 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
190 |
+
|
191 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
192 |
+
self.max_seq_len_cached = seq_len
|
193 |
+
|
194 |
+
if seq_len > self.max_position_embeddings:
|
195 |
+
base = self.base * (
|
196 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
197 |
+
) ** (self.dim / (self.dim - 2))
|
198 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
199 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
200 |
+
|
201 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
202 |
+
|
203 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
204 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
205 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
206 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
207 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
208 |
+
|
209 |
+
|
210 |
+
class ZhinaoNTKScalingRotaryEmbedding(torch.nn.Module):
|
211 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, scaling_factor=100, device=None):
|
212 |
+
super().__init__()
|
213 |
+
|
214 |
+
self.dim = dim
|
215 |
+
self.max_position_embeddings = max_position_embeddings
|
216 |
+
self.base = base * scaling_factor
|
217 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
218 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
219 |
+
|
220 |
+
# Build here to make `torch.jit.trace` work.
|
221 |
+
self._set_cos_sin_cache(
|
222 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
223 |
+
)
|
224 |
+
|
225 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
226 |
+
self.max_seq_len_cached = seq_len
|
227 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
228 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
229 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
230 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
231 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
232 |
+
|
233 |
+
def forward(self, x, seq_len=None):
|
234 |
+
if seq_len > self.max_seq_len_cached:
|
235 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
236 |
+
|
237 |
+
return (
|
238 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
239 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
def rotate_half(x):
|
244 |
+
"""Rotates half the hidden dims of the input."""
|
245 |
+
x1 = x[..., : x.shape[-1] // 2]
|
246 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
247 |
+
return torch.cat((-x2, x1), dim=-1)
|
248 |
+
|
249 |
+
|
250 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
251 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
252 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
253 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
254 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
255 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
256 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
257 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
258 |
+
return q_embed, k_embed
|
259 |
+
|
260 |
+
|
261 |
+
class ZhinaoMLP(nn.Module):
|
262 |
+
def __init__(self, config):
|
263 |
+
super().__init__()
|
264 |
+
self.config = config
|
265 |
+
self.hidden_size = config.hidden_size
|
266 |
+
self.intermediate_size = config.intermediate_size
|
267 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
268 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
269 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
270 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
271 |
+
|
272 |
+
def forward(self, x):
|
273 |
+
intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
|
274 |
+
down_proj = self.down_proj(intermediate)
|
275 |
+
return down_proj
|
276 |
+
|
277 |
+
|
278 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
279 |
+
"""
|
280 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
281 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
282 |
+
"""
|
283 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
284 |
+
if n_rep == 1:
|
285 |
+
return hidden_states
|
286 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
287 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
288 |
+
|
289 |
+
|
290 |
+
class ZhinaoAttention(nn.Module):
|
291 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
292 |
+
|
293 |
+
def __init__(self, config: ZhinaoConfig):
|
294 |
+
super().__init__()
|
295 |
+
self.config = config
|
296 |
+
self.hidden_size = config.hidden_size
|
297 |
+
self.num_heads = config.num_attention_heads
|
298 |
+
self.head_dim = self.hidden_size // self.num_heads
|
299 |
+
self.num_key_value_heads = config.num_key_value_heads
|
300 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
301 |
+
self.max_position_embeddings = config.max_position_embeddings
|
302 |
+
self.rope_theta = config.rope_theta
|
303 |
+
self.is_causal = True
|
304 |
+
self.dropout = 0.0
|
305 |
+
self.use_flash_attn = config.use_flash_attn
|
306 |
+
|
307 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
308 |
+
raise ValueError(
|
309 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
310 |
+
f" and `num_heads`: {self.num_heads})."
|
311 |
+
)
|
312 |
+
|
313 |
+
self.qkv_hidden_size = (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim
|
314 |
+
self.qkv_proj = nn.Linear(self.hidden_size, self.qkv_hidden_size, bias=True)
|
315 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
316 |
+
self._init_rope()
|
317 |
+
|
318 |
+
def _init_rope(self):
|
319 |
+
if self.config.rope_scaling is None:
|
320 |
+
self.rotary_emb = ZhinaoRotaryEmbedding(
|
321 |
+
self.head_dim,
|
322 |
+
max_position_embeddings=self.max_position_embeddings,
|
323 |
+
base=self.rope_theta,
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
scaling_type = self.config.rope_scaling["type"]
|
327 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
328 |
+
if scaling_type == "linear":
|
329 |
+
self.rotary_emb = ZhinaoLinearScalingRotaryEmbedding(
|
330 |
+
self.head_dim,
|
331 |
+
max_position_embeddings=self.max_position_embeddings,
|
332 |
+
scaling_factor=scaling_factor,
|
333 |
+
base=self.rope_theta,
|
334 |
+
)
|
335 |
+
elif scaling_type == "dynamic":
|
336 |
+
self.rotary_emb = ZhinaoDynamicNTKScalingRotaryEmbedding(
|
337 |
+
self.head_dim,
|
338 |
+
max_position_embeddings=self.max_position_embeddings,
|
339 |
+
scaling_factor=scaling_factor,
|
340 |
+
base=self.rope_theta,
|
341 |
+
)
|
342 |
+
elif scaling_type == "ntk":
|
343 |
+
self.rotary_emb = ZhinaoNTKScalingRotaryEmbedding(
|
344 |
+
self.head_dim,
|
345 |
+
max_position_embeddings=self.max_position_embeddings,
|
346 |
+
scaling_factor=scaling_factor,
|
347 |
+
base=self.rope_theta,
|
348 |
+
)
|
349 |
+
else:
|
350 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
351 |
+
|
352 |
+
def raw_attention(self, query_states, key_states, value_states, attention_mask):
|
353 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
354 |
+
|
355 |
+
if attention_mask is not None:
|
356 |
+
attn_weights = attn_weights + attention_mask
|
357 |
+
|
358 |
+
# upcast attention to fp32
|
359 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
360 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
361 |
+
|
362 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
363 |
+
|
364 |
+
return attn_output
|
365 |
+
|
366 |
+
def flash_attention(self, query_states, key_states, value_states, attention_mask):
|
367 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
368 |
+
# to be able to avoid many of these transpose/reshape/view.
|
369 |
+
query_states = query_states.transpose(1, 2)
|
370 |
+
key_states = key_states.transpose(1, 2)
|
371 |
+
value_states = value_states.transpose(1, 2)
|
372 |
+
|
373 |
+
batch_size, query_length = query_states.shape[0], query_states.shape[1]
|
374 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
375 |
+
query_states, key_states, value_states, attention_mask, query_length
|
376 |
+
)
|
377 |
+
|
378 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
379 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
380 |
+
|
381 |
+
attn_output_unpad = flash_attn_varlen_func(
|
382 |
+
query_states,
|
383 |
+
key_states,
|
384 |
+
value_states,
|
385 |
+
cu_seqlens_q=cu_seqlens_q,
|
386 |
+
cu_seqlens_k=cu_seqlens_k,
|
387 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
388 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
389 |
+
dropout_p=self.dropout,
|
390 |
+
softmax_scale=None,
|
391 |
+
causal=self.is_causal,
|
392 |
+
)
|
393 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
394 |
+
return attn_output
|
395 |
+
|
396 |
+
def forward(
|
397 |
+
self,
|
398 |
+
hidden_states: torch.Tensor,
|
399 |
+
attention_mask: Optional[torch.Tensor] = None,
|
400 |
+
position_ids: Optional[torch.LongTensor] = None,
|
401 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
402 |
+
output_attentions: bool = False,
|
403 |
+
use_cache: bool = False,
|
404 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
405 |
+
bsz, q_len, _ = hidden_states.size()
|
406 |
+
|
407 |
+
mixed_x_layer = self.qkv_proj(hidden_states)
|
408 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
409 |
+
(self.num_key_value_heads, ((self.num_heads // self.num_key_value_heads + 2) * self.head_dim))
|
410 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
411 |
+
query, key_states, value_states = torch.split(
|
412 |
+
mixed_x_layer,
|
413 |
+
[self.num_heads // self.num_key_value_heads * self.head_dim, self.head_dim, self.head_dim],
|
414 |
+
dim=3
|
415 |
+
)
|
416 |
+
# [sq, b, ng, np/ng * hn] -> [sq, b, np, hn]
|
417 |
+
query_states = query.contiguous().view(query.size(0), query.size(1), -1, self.head_dim)
|
418 |
+
|
419 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
420 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
421 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
422 |
+
|
423 |
+
kv_seq_len = key_states.shape[-2]
|
424 |
+
if past_key_value is not None:
|
425 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
426 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
427 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
428 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
429 |
+
|
430 |
+
if past_key_value is not None:
|
431 |
+
# reuse k, v, self_attention
|
432 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
433 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
434 |
+
|
435 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
436 |
+
|
437 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
438 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
439 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
440 |
+
|
441 |
+
# q, k, v: [b, n, s, h]
|
442 |
+
# check attention mask
|
443 |
+
if self.use_flash_attn:
|
444 |
+
if attention_mask is not None and attention_mask.size() != (bsz, kv_seq_len):
|
445 |
+
raise ValueError(f"Attention mask should be of size {(bsz, kv_seq_len)}, but is {attention_mask.size()}")
|
446 |
+
attn_output = self.flash_attention(query_states, key_states, value_states, attention_mask)
|
447 |
+
else:
|
448 |
+
if attention_mask is not None and attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
449 |
+
raise ValueError(f"Attention mask should be of size {bsz, 1, q_len, kv_seq_len}, but is {attention_mask.size()}")
|
450 |
+
attn_output = self.raw_attention(query_states, key_states, value_states, attention_mask)
|
451 |
+
|
452 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
453 |
+
attn_output = self.o_proj(attn_output)
|
454 |
+
|
455 |
+
if not output_attentions:
|
456 |
+
attn_weights = None
|
457 |
+
|
458 |
+
return attn_output, attn_weights, past_key_value
|
459 |
+
|
460 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
461 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
462 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
463 |
+
|
464 |
+
# On the first iteration we need to properly re-create the padding mask
|
465 |
+
# by slicing it on the proper place
|
466 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
467 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
468 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
469 |
+
|
470 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
471 |
+
|
472 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
473 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
474 |
+
|
475 |
+
if query_length == kv_seq_len:
|
476 |
+
query_layer = index_first_axis(
|
477 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
478 |
+
)
|
479 |
+
cu_seqlens_q = cu_seqlens_k
|
480 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
481 |
+
indices_q = indices_k
|
482 |
+
elif query_length == 1:
|
483 |
+
max_seqlen_in_batch_q = 1
|
484 |
+
cu_seqlens_q = torch.arange(
|
485 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
486 |
+
) # There is a memcpy here, that is very bad.
|
487 |
+
indices_q = cu_seqlens_q[:-1]
|
488 |
+
query_layer = query_layer.squeeze(1)
|
489 |
+
else:
|
490 |
+
# The -q_len: slice assumes left padding.
|
491 |
+
attention_mask = attention_mask[:, -query_length:]
|
492 |
+
|
493 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
494 |
+
return (
|
495 |
+
query_layer,
|
496 |
+
key_layer,
|
497 |
+
value_layer,
|
498 |
+
indices_q,
|
499 |
+
(cu_seqlens_q, cu_seqlens_k),
|
500 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
501 |
+
)
|
502 |
+
|
503 |
+
|
504 |
+
class ZhinaoDecoderLayer(nn.Module):
|
505 |
+
def __init__(self, config: ZhinaoConfig):
|
506 |
+
super().__init__()
|
507 |
+
self.hidden_size = config.hidden_size
|
508 |
+
|
509 |
+
self.self_attn = ZhinaoAttention(config=config)
|
510 |
+
self.mlp = ZhinaoMLP(config)
|
511 |
+
self.input_layernorm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
512 |
+
self.post_attention_layernorm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
513 |
+
|
514 |
+
def forward(
|
515 |
+
self,
|
516 |
+
hidden_states: torch.Tensor,
|
517 |
+
attention_mask: Optional[torch.Tensor] = None,
|
518 |
+
position_ids: Optional[torch.LongTensor] = None,
|
519 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
520 |
+
output_attentions: Optional[bool] = False,
|
521 |
+
use_cache: Optional[bool] = False,
|
522 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
523 |
+
"""
|
524 |
+
Args:
|
525 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
526 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
527 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
528 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
529 |
+
output_attentions (`bool`, *optional*):
|
530 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
531 |
+
returned tensors for more detail.
|
532 |
+
use_cache (`bool`, *optional*):
|
533 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
534 |
+
(see `past_key_values`).
|
535 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
536 |
+
"""
|
537 |
+
|
538 |
+
residual = hidden_states
|
539 |
+
|
540 |
+
hidden_states = self.input_layernorm(hidden_states)
|
541 |
+
|
542 |
+
# Self Attention
|
543 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
544 |
+
hidden_states=hidden_states,
|
545 |
+
attention_mask=attention_mask,
|
546 |
+
position_ids=position_ids,
|
547 |
+
past_key_value=past_key_value,
|
548 |
+
output_attentions=output_attentions,
|
549 |
+
use_cache=use_cache,
|
550 |
+
)
|
551 |
+
hidden_states = residual + hidden_states
|
552 |
+
|
553 |
+
# Fully Connected
|
554 |
+
residual = hidden_states
|
555 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
556 |
+
hidden_states = self.mlp(hidden_states)
|
557 |
+
hidden_states = residual + hidden_states
|
558 |
+
|
559 |
+
outputs = (hidden_states,)
|
560 |
+
|
561 |
+
if output_attentions:
|
562 |
+
outputs += (self_attn_weights,)
|
563 |
+
|
564 |
+
if use_cache:
|
565 |
+
outputs += (present_key_value,)
|
566 |
+
|
567 |
+
return outputs
|
568 |
+
|
569 |
+
|
570 |
+
class ZhinaoPreTrainedModel(PreTrainedModel):
|
571 |
+
config_class = ZhinaoConfig
|
572 |
+
base_model_prefix = "model"
|
573 |
+
supports_gradient_checkpointing = True
|
574 |
+
_no_split_modules = ["ZhinaoDecoderLayer"]
|
575 |
+
_skip_keys_device_placement = "past_key_values"
|
576 |
+
|
577 |
+
def _init_weights(self, module):
|
578 |
+
std = self.config.initializer_range
|
579 |
+
if isinstance(module, nn.Linear):
|
580 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
581 |
+
if module.bias is not None:
|
582 |
+
module.bias.data.zero_()
|
583 |
+
elif isinstance(module, nn.Embedding):
|
584 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
585 |
+
if module.padding_idx is not None:
|
586 |
+
module.weight.data[module.padding_idx].zero_()
|
587 |
+
|
588 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
589 |
+
if isinstance(module, ZhinaoModel):
|
590 |
+
module.gradient_checkpointing = value
|
591 |
+
|
592 |
+
|
593 |
+
class ZhinaoModel(ZhinaoPreTrainedModel):
|
594 |
+
"""
|
595 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ZhinaoDecoderLayer`]
|
596 |
+
|
597 |
+
Args:
|
598 |
+
config: ZhinaoConfig
|
599 |
+
"""
|
600 |
+
|
601 |
+
def __init__(self, config: ZhinaoConfig):
|
602 |
+
super().__init__(config)
|
603 |
+
self.padding_idx = config.pad_token_id
|
604 |
+
self.vocab_size = config.vocab_size
|
605 |
+
self.use_flash_attn = config.use_flash_attn
|
606 |
+
|
607 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
608 |
+
self.layers = nn.ModuleList([ZhinaoDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
609 |
+
self.norm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
610 |
+
|
611 |
+
self.gradient_checkpointing = False
|
612 |
+
# Initialize weights and apply final processing
|
613 |
+
self.post_init()
|
614 |
+
|
615 |
+
def get_input_embeddings(self):
|
616 |
+
return self.embed_tokens
|
617 |
+
|
618 |
+
def set_input_embeddings(self, value):
|
619 |
+
self.embed_tokens = value
|
620 |
+
|
621 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
622 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
623 |
+
# create causal mask
|
624 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
625 |
+
combined_attention_mask = None
|
626 |
+
if input_shape[-1] > 1:
|
627 |
+
combined_attention_mask = _make_causal_mask(
|
628 |
+
input_shape,
|
629 |
+
inputs_embeds.dtype,
|
630 |
+
device=inputs_embeds.device,
|
631 |
+
past_key_values_length=past_key_values_length,
|
632 |
+
)
|
633 |
+
|
634 |
+
if attention_mask is not None:
|
635 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
636 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
637 |
+
inputs_embeds.device
|
638 |
+
)
|
639 |
+
combined_attention_mask = (
|
640 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
641 |
+
)
|
642 |
+
|
643 |
+
return combined_attention_mask
|
644 |
+
|
645 |
+
def forward(
|
646 |
+
self,
|
647 |
+
input_ids: torch.LongTensor = None,
|
648 |
+
attention_mask: Optional[torch.Tensor] = None,
|
649 |
+
position_ids: Optional[torch.LongTensor] = None,
|
650 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
651 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
652 |
+
use_cache: Optional[bool] = None,
|
653 |
+
output_attentions: Optional[bool] = None,
|
654 |
+
output_hidden_states: Optional[bool] = None,
|
655 |
+
return_dict: Optional[bool] = None,
|
656 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
657 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
658 |
+
output_hidden_states = (
|
659 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
660 |
+
)
|
661 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
662 |
+
|
663 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
664 |
+
|
665 |
+
# retrieve input_ids and inputs_embeds
|
666 |
+
if input_ids is not None and inputs_embeds is not None:
|
667 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
668 |
+
elif input_ids is not None:
|
669 |
+
batch_size, seq_length = input_ids.shape
|
670 |
+
elif inputs_embeds is not None:
|
671 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
672 |
+
else:
|
673 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
674 |
+
|
675 |
+
seq_length_with_past = seq_length
|
676 |
+
past_key_values_length = 0
|
677 |
+
|
678 |
+
if past_key_values is not None:
|
679 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
680 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
681 |
+
|
682 |
+
if position_ids is None:
|
683 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
684 |
+
position_ids = torch.arange(
|
685 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
686 |
+
)
|
687 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
688 |
+
else:
|
689 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
690 |
+
|
691 |
+
if inputs_embeds is None:
|
692 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
693 |
+
# embed positions
|
694 |
+
if attention_mask is None:
|
695 |
+
attention_mask = torch.ones(
|
696 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
697 |
+
)
|
698 |
+
|
699 |
+
# (batch_size, 1, seq_length, seq_length)` if default attention is used
|
700 |
+
if not self.use_flash_attn:
|
701 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
702 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
703 |
+
)
|
704 |
+
|
705 |
+
hidden_states = inputs_embeds
|
706 |
+
|
707 |
+
if self.gradient_checkpointing and self.training:
|
708 |
+
if use_cache:
|
709 |
+
logger.warning_once(
|
710 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
711 |
+
)
|
712 |
+
use_cache = False
|
713 |
+
|
714 |
+
# decoder layers
|
715 |
+
all_hidden_states = () if output_hidden_states else None
|
716 |
+
all_self_attns = () if output_attentions else None
|
717 |
+
next_decoder_cache = () if use_cache else None
|
718 |
+
|
719 |
+
for idx, decoder_layer in enumerate(self.layers):
|
720 |
+
if output_hidden_states:
|
721 |
+
all_hidden_states += (hidden_states,)
|
722 |
+
|
723 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
724 |
+
|
725 |
+
if self.gradient_checkpointing and self.training:
|
726 |
+
|
727 |
+
def create_custom_forward(module):
|
728 |
+
def custom_forward(*inputs):
|
729 |
+
# None for past_key_value
|
730 |
+
return module(*inputs, past_key_value, output_attentions)
|
731 |
+
|
732 |
+
return custom_forward
|
733 |
+
|
734 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
735 |
+
create_custom_forward(decoder_layer),
|
736 |
+
hidden_states,
|
737 |
+
attention_mask,
|
738 |
+
position_ids,
|
739 |
+
)
|
740 |
+
else:
|
741 |
+
layer_outputs = decoder_layer(
|
742 |
+
hidden_states,
|
743 |
+
attention_mask=attention_mask,
|
744 |
+
position_ids=position_ids,
|
745 |
+
past_key_value=past_key_value,
|
746 |
+
output_attentions=output_attentions,
|
747 |
+
use_cache=use_cache,
|
748 |
+
)
|
749 |
+
|
750 |
+
hidden_states = layer_outputs[0]
|
751 |
+
|
752 |
+
if use_cache:
|
753 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
754 |
+
|
755 |
+
if output_attentions:
|
756 |
+
all_self_attns += (layer_outputs[1],)
|
757 |
+
|
758 |
+
hidden_states = self.norm(hidden_states)
|
759 |
+
|
760 |
+
# add hidden states from the last decoder layer
|
761 |
+
if output_hidden_states:
|
762 |
+
all_hidden_states += (hidden_states,)
|
763 |
+
|
764 |
+
next_cache = next_decoder_cache if use_cache else None
|
765 |
+
if not return_dict:
|
766 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
767 |
+
|
768 |
+
return BaseModelOutputWithPast(
|
769 |
+
last_hidden_state=hidden_states,
|
770 |
+
past_key_values=next_cache,
|
771 |
+
hidden_states=all_hidden_states,
|
772 |
+
attentions=all_self_attns,
|
773 |
+
)
|
774 |
+
|
775 |
+
|
776 |
+
class ZhinaoForCausalLM(ZhinaoPreTrainedModel):
|
777 |
+
_tied_weights_keys = ["lm_head.weight"]
|
778 |
+
|
779 |
+
def __init__(self, config):
|
780 |
+
super().__init__(config)
|
781 |
+
self.model = ZhinaoModel(config)
|
782 |
+
self.vocab_size = config.vocab_size
|
783 |
+
self.log_logit = config.log_logit
|
784 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
785 |
+
|
786 |
+
# Initialize weights and apply final processing
|
787 |
+
if config.bf16:
|
788 |
+
self.model.bfloat16()
|
789 |
+
self.lm_head.bfloat16()
|
790 |
+
if config.fp16:
|
791 |
+
self.model.half()
|
792 |
+
self.lm_head.half()
|
793 |
+
|
794 |
+
if config.use_flash_attn == "auto":
|
795 |
+
if flash_attn_varlen_func:
|
796 |
+
if config.bf16 or config.fp16:
|
797 |
+
logger.warn("Try importing flash-attention.")
|
798 |
+
config.use_flash_attn = True
|
799 |
+
else:
|
800 |
+
config.use_flash_attn = False
|
801 |
+
logger.warn("Flash attention will be disabled because it does NOT support fp32.")
|
802 |
+
else:
|
803 |
+
config.use_flash_attn = False
|
804 |
+
logger.warn("Please install FlashAttention first, " "e.g., with pip install flash-attn")
|
805 |
+
|
806 |
+
self.post_init()
|
807 |
+
|
808 |
+
def get_input_embeddings(self):
|
809 |
+
return self.model.embed_tokens
|
810 |
+
|
811 |
+
def set_input_embeddings(self, value):
|
812 |
+
self.model.embed_tokens = value
|
813 |
+
|
814 |
+
def get_output_embeddings(self):
|
815 |
+
return self.lm_head
|
816 |
+
|
817 |
+
def set_output_embeddings(self, new_embeddings):
|
818 |
+
self.lm_head = new_embeddings
|
819 |
+
|
820 |
+
def set_decoder(self, decoder):
|
821 |
+
self.model = decoder
|
822 |
+
|
823 |
+
def get_decoder(self):
|
824 |
+
return self.model
|
825 |
+
|
826 |
+
def forward(
|
827 |
+
self,
|
828 |
+
input_ids: torch.LongTensor = None,
|
829 |
+
attention_mask: Optional[torch.Tensor] = None,
|
830 |
+
position_ids: Optional[torch.LongTensor] = None,
|
831 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
832 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
833 |
+
labels: Optional[torch.LongTensor] = None,
|
834 |
+
use_cache: Optional[bool] = None,
|
835 |
+
output_attentions: Optional[bool] = None,
|
836 |
+
output_hidden_states: Optional[bool] = None,
|
837 |
+
return_dict: Optional[bool] = None,
|
838 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
839 |
+
|
840 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
841 |
+
output_hidden_states = (
|
842 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
843 |
+
)
|
844 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
845 |
+
|
846 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
847 |
+
outputs = self.model(
|
848 |
+
input_ids=input_ids,
|
849 |
+
attention_mask=attention_mask,
|
850 |
+
position_ids=position_ids,
|
851 |
+
past_key_values=past_key_values,
|
852 |
+
inputs_embeds=inputs_embeds,
|
853 |
+
use_cache=use_cache,
|
854 |
+
output_attentions=output_attentions,
|
855 |
+
output_hidden_states=output_hidden_states,
|
856 |
+
return_dict=return_dict,
|
857 |
+
)
|
858 |
+
|
859 |
+
hidden_states = outputs[0]
|
860 |
+
logits = self.lm_head(hidden_states)
|
861 |
+
|
862 |
+
# warn:Huge gpu memory
|
863 |
+
logits = logits.float()
|
864 |
+
|
865 |
+
# log_logit
|
866 |
+
if self.log_logit:
|
867 |
+
log_res = calc_logits_metric(logits)
|
868 |
+
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
|
869 |
+
print("logits_log", log_res)
|
870 |
+
|
871 |
+
loss = None
|
872 |
+
if labels is not None:
|
873 |
+
# Shift so that tokens < n predict n
|
874 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
875 |
+
shift_labels = labels[..., 1:].contiguous()
|
876 |
+
# Flatten the tokens
|
877 |
+
loss_fct = CrossEntropyLoss()
|
878 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
879 |
+
shift_labels = shift_labels.view(-1)
|
880 |
+
# Enable model parallelism
|
881 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
882 |
+
loss = loss_fct(shift_logits, shift_labels)
|
883 |
+
|
884 |
+
if not return_dict:
|
885 |
+
output = (logits,) + outputs[1:]
|
886 |
+
return (loss,) + output if loss is not None else output
|
887 |
+
|
888 |
+
return CausalLMOutputWithPast(
|
889 |
+
loss=loss,
|
890 |
+
logits=logits,
|
891 |
+
past_key_values=outputs.past_key_values,
|
892 |
+
hidden_states=outputs.hidden_states,
|
893 |
+
attentions=outputs.attentions,
|
894 |
+
)
|
895 |
+
|
896 |
+
def prepare_inputs_for_generation(
|
897 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
898 |
+
):
|
899 |
+
if past_key_values:
|
900 |
+
input_ids = input_ids[:, -1:]
|
901 |
+
|
902 |
+
position_ids = kwargs.get("position_ids", None)
|
903 |
+
if attention_mask is not None and position_ids is None:
|
904 |
+
# create position_ids on the fly for batch generation
|
905 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
906 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
907 |
+
if past_key_values:
|
908 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
909 |
+
|
910 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
911 |
+
if inputs_embeds is not None and past_key_values is None:
|
912 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
913 |
+
else:
|
914 |
+
model_inputs = {"input_ids": input_ids}
|
915 |
+
|
916 |
+
model_inputs.update(
|
917 |
+
{
|
918 |
+
"position_ids": position_ids,
|
919 |
+
"past_key_values": past_key_values,
|
920 |
+
"use_cache": kwargs.get("use_cache"),
|
921 |
+
"attention_mask": attention_mask,
|
922 |
+
}
|
923 |
+
)
|
924 |
+
return model_inputs
|
925 |
+
|
926 |
+
@staticmethod
|
927 |
+
def _reorder_cache(past_key_values, beam_idx):
|
928 |
+
reordered_past = ()
|
929 |
+
for layer_past in past_key_values:
|
930 |
+
reordered_past += (
|
931 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
932 |
+
)
|
933 |
+
return reordered_past
|
934 |
+
|
935 |
+
|
936 |
+
def generate(
|
937 |
+
self,
|
938 |
+
inputs: Optional[torch.Tensor] = None,
|
939 |
+
generation_config: Optional[GenerationConfig] = None,
|
940 |
+
streamer = None,
|
941 |
+
**kwargs,
|
942 |
+
):
|
943 |
+
logits_processor = None
|
944 |
+
if generation_config is not None:
|
945 |
+
repetition_penalty = kwargs.pop("repetition_penalty", generation_config.repetition_penalty)
|
946 |
+
generation_config.repetition_penalty = 1.0
|
947 |
+
|
948 |
+
if repetition_penalty > 1.0:
|
949 |
+
warnings.warn("We highly recommend using OpenAI's frequency and presence penalty instead of the original repetition penalty. The original repetition penalty penalizes prompt tokens, which may lead to various potential issues. Therefore, your repetition penalty coefficient will be transformed into frequency penalty and presence penalty.", UserWarning)
|
950 |
+
presence_penalty = repetition_penalty - 1.0
|
951 |
+
frequency_penalty = repetition_penalty - 1.0
|
952 |
+
logits_processor = LogitsProcessorList(
|
953 |
+
[OutputRepetitionPenaltyLogitsProcessor(inputs.size(1), presence_penalty, frequency_penalty, 1.0)]
|
954 |
+
)
|
955 |
+
|
956 |
+
response = super().generate(
|
957 |
+
inputs,
|
958 |
+
generation_config=generation_config,
|
959 |
+
logits_processor=logits_processor,
|
960 |
+
streamer=streamer,
|
961 |
+
**kwargs,
|
962 |
+
)
|
963 |
+
if generation_config is not None:
|
964 |
+
generation_config.repetition_penalty = repetition_penalty
|
965 |
+
return response
|
966 |
+
|
967 |
+
|
968 |
+
def chat(
|
969 |
+
self,
|
970 |
+
tokenizer,
|
971 |
+
messages: List[dict],
|
972 |
+
system: str = "You are a helpful assistant.",
|
973 |
+
stream=False,
|
974 |
+
generation_config: Optional[GenerationConfig]=None):
|
975 |
+
|
976 |
+
generation_config = generation_config or self.generation_config
|
977 |
+
input_ids = make_context(
|
978 |
+
model=self, tokenizer=tokenizer, messages=messages,
|
979 |
+
system=system, max_new_tokens=generation_config.max_new_tokens
|
980 |
+
)
|
981 |
+
|
982 |
+
if stream:
|
983 |
+
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
984 |
+
Thread(target=self.generate, kwargs=dict(
|
985 |
+
inputs=input_ids, streamer=streamer,
|
986 |
+
generation_config=generation_config,
|
987 |
+
)).start()
|
988 |
+
return streamer
|
989 |
+
else:
|
990 |
+
outputs = self.generate(input_ids, generation_config=generation_config)
|
991 |
+
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
992 |
+
return response
|
993 |
+
|
994 |
+
|
995 |
+
class ZhinaoForSequenceClassification(ZhinaoPreTrainedModel):
|
996 |
+
def __init__(self, config):
|
997 |
+
super().__init__(config)
|
998 |
+
self.num_labels = config.num_labels
|
999 |
+
self.model = ZhinaoModel(config)
|
1000 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1001 |
+
|
1002 |
+
# Initialize weights and apply final processing
|
1003 |
+
self.post_init()
|
1004 |
+
|
1005 |
+
def get_input_embeddings(self):
|
1006 |
+
return self.model.embed_tokens
|
1007 |
+
|
1008 |
+
def set_input_embeddings(self, value):
|
1009 |
+
self.model.embed_tokens = value
|
1010 |
+
|
1011 |
+
def forward(
|
1012 |
+
self,
|
1013 |
+
input_ids: torch.LongTensor = None,
|
1014 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1015 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1016 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1017 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1018 |
+
labels: Optional[torch.LongTensor] = None,
|
1019 |
+
use_cache: Optional[bool] = None,
|
1020 |
+
output_attentions: Optional[bool] = None,
|
1021 |
+
output_hidden_states: Optional[bool] = None,
|
1022 |
+
return_dict: Optional[bool] = None,
|
1023 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1024 |
+
|
1025 |
+
|
1026 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1027 |
+
|
1028 |
+
transformer_outputs = self.model(
|
1029 |
+
input_ids,
|
1030 |
+
attention_mask=attention_mask,
|
1031 |
+
position_ids=position_ids,
|
1032 |
+
past_key_values=past_key_values,
|
1033 |
+
inputs_embeds=inputs_embeds,
|
1034 |
+
use_cache=use_cache,
|
1035 |
+
output_attentions=output_attentions,
|
1036 |
+
output_hidden_states=output_hidden_states,
|
1037 |
+
return_dict=return_dict,
|
1038 |
+
)
|
1039 |
+
hidden_states = transformer_outputs[0]
|
1040 |
+
logits = self.score(hidden_states)
|
1041 |
+
|
1042 |
+
if input_ids is not None:
|
1043 |
+
batch_size = input_ids.shape[0]
|
1044 |
+
else:
|
1045 |
+
batch_size = inputs_embeds.shape[0]
|
1046 |
+
|
1047 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1048 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1049 |
+
if self.config.pad_token_id is None:
|
1050 |
+
sequence_lengths = -1
|
1051 |
+
else:
|
1052 |
+
if input_ids is not None:
|
1053 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
1054 |
+
logits.device
|
1055 |
+
)
|
1056 |
+
else:
|
1057 |
+
sequence_lengths = -1
|
1058 |
+
|
1059 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1060 |
+
|
1061 |
+
loss = None
|
1062 |
+
if labels is not None:
|
1063 |
+
labels = labels.to(logits.device)
|
1064 |
+
if self.config.problem_type is None:
|
1065 |
+
if self.num_labels == 1:
|
1066 |
+
self.config.problem_type = "regression"
|
1067 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1068 |
+
self.config.problem_type = "single_label_classification"
|
1069 |
+
else:
|
1070 |
+
self.config.problem_type = "multi_label_classification"
|
1071 |
+
|
1072 |
+
if self.config.problem_type == "regression":
|
1073 |
+
loss_fct = MSELoss()
|
1074 |
+
if self.num_labels == 1:
|
1075 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1076 |
+
else:
|
1077 |
+
loss = loss_fct(pooled_logits, labels)
|
1078 |
+
elif self.config.problem_type == "single_label_classification":
|
1079 |
+
loss_fct = CrossEntropyLoss()
|
1080 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1081 |
+
elif self.config.problem_type == "multi_label_classification":
|
1082 |
+
loss_fct = BCEWithLogitsLoss()
|
1083 |
+
loss = loss_fct(pooled_logits, labels)
|
1084 |
+
if not return_dict:
|
1085 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1086 |
+
return ((loss,) + output) if loss is not None else output
|
1087 |
+
|
1088 |
+
return SequenceClassifierOutputWithPast(
|
1089 |
+
loss=loss,
|
1090 |
+
logits=pooled_logits,
|
1091 |
+
past_key_values=transformer_outputs.past_key_values,
|
1092 |
+
hidden_states=transformer_outputs.hidden_states,
|
1093 |
+
attentions=transformer_outputs.attentions,
|
1094 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<pad>"
|
3 |
+
}
|
tokenization_zhinao.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import base64
|
4 |
+
import tiktoken
|
5 |
+
from typing import Collection, Optional, Dict, List, Set, Tuple, Union
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from transformers.utils import PaddingStrategy
|
8 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
12 |
+
|
13 |
+
|
14 |
+
class SPTokenizer:
|
15 |
+
def __init__(self, model_path):
|
16 |
+
self.vocab_file = model_path
|
17 |
+
self.pad_token = '<pad>'
|
18 |
+
self.unk_token = '<unk>'
|
19 |
+
self.mask_token = '<mask>'
|
20 |
+
self.eod_token = '<eod>'
|
21 |
+
self.eop_token = '<eop>'
|
22 |
+
self.im_start_token = '<|im_start|>'
|
23 |
+
self.im_end_token = '<|im_end|>'
|
24 |
+
|
25 |
+
## special_tokens
|
26 |
+
self.SPECIAL_TOKENS = (
|
27 |
+
self.pad_token,
|
28 |
+
self.unk_token,
|
29 |
+
self.mask_token,
|
30 |
+
self.eod_token,
|
31 |
+
self.eop_token,
|
32 |
+
'[space2]', '[space3]', '[space4]', '[space8]',
|
33 |
+
self.im_start_token, self.im_end_token
|
34 |
+
)
|
35 |
+
self.bulid_tokenizer()
|
36 |
+
self.out = self.output_core_token()
|
37 |
+
|
38 |
+
self.token2strs = {
|
39 |
+
"[space2]": " ",
|
40 |
+
"[space3]": " ",
|
41 |
+
"[space4]": " ",
|
42 |
+
"[space8]": " ",
|
43 |
+
}
|
44 |
+
self.str2tokens = {v: k for k, v in self.token2strs.items()}
|
45 |
+
self.sorted_strs = sorted(list(self.str2tokens.keys()),
|
46 |
+
key=lambda x: len(x), reverse=True)
|
47 |
+
|
48 |
+
## skip_special_tokens
|
49 |
+
self.decode_skip_special_tokens = [
|
50 |
+
self.pad_token,
|
51 |
+
self.unk_token,
|
52 |
+
self.mask_token,
|
53 |
+
self.eod_token,
|
54 |
+
self.eop_token,
|
55 |
+
self.im_start_token,
|
56 |
+
self.im_end_token]
|
57 |
+
self.decode_skip_special_tokens_ids = [self.convert_token_to_id(token) for token in self.decode_skip_special_tokens]
|
58 |
+
|
59 |
+
def _load_tiktoken_bpe(self, tiktoken_bpe_file: str):
|
60 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
61 |
+
contents = f.read()
|
62 |
+
return {
|
63 |
+
base64.b64decode(token): int(rank)
|
64 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
65 |
+
}
|
66 |
+
|
67 |
+
def bulid_tokenizer(self):
|
68 |
+
mergeable_ranks = self._load_tiktoken_bpe(self.vocab_file)
|
69 |
+
special_tokens = {
|
70 |
+
token: index
|
71 |
+
for index, token in enumerate(
|
72 |
+
self.SPECIAL_TOKENS, start=len(mergeable_ranks)
|
73 |
+
)
|
74 |
+
}
|
75 |
+
encode = tiktoken.Encoding(
|
76 |
+
"zhinao",
|
77 |
+
pat_str=PAT_STR,
|
78 |
+
mergeable_ranks=mergeable_ranks,
|
79 |
+
special_tokens=special_tokens
|
80 |
+
)
|
81 |
+
decoder = {v: k for k, v in mergeable_ranks.items()}
|
82 |
+
decoder.update({v: k for k, v in special_tokens.items()})
|
83 |
+
decoder_token2id = {v: k for k, v in decoder.items()}
|
84 |
+
|
85 |
+
self.tokenizer = encode
|
86 |
+
self.decoder = decoder
|
87 |
+
self.decoder_token2id = decoder_token2id
|
88 |
+
self.num_tokens = len(mergeable_ranks) + len(self.SPECIAL_TOKENS)
|
89 |
+
|
90 |
+
def output_core_token(self):
|
91 |
+
"""output special tokens"""
|
92 |
+
out = {}
|
93 |
+
for t in self.SPECIAL_TOKENS:
|
94 |
+
out[t] = self.convert_token_to_id(t)
|
95 |
+
return out
|
96 |
+
|
97 |
+
def tokenize(
|
98 |
+
self,
|
99 |
+
text,
|
100 |
+
allowed_special: Union[Set, str] = "all",
|
101 |
+
disallowed_special: Union[Collection, str] = ()):
|
102 |
+
tokens = []
|
103 |
+
text = self.convert(text)
|
104 |
+
for idx in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special):
|
105 |
+
tokens.append(self.decoder[idx])
|
106 |
+
return tokens
|
107 |
+
|
108 |
+
def encode(self, text, allowed_special="all", disallowed_special=()):
|
109 |
+
"""text to id"""
|
110 |
+
text = self.convert(text)
|
111 |
+
return self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
|
112 |
+
|
113 |
+
def decode(self, ids, errors="replace"):
|
114 |
+
"""id to text"""
|
115 |
+
text = self.tokenizer.decode(ids, errors=errors)
|
116 |
+
return self.deconvert(text)
|
117 |
+
|
118 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
119 |
+
"""
|
120 |
+
Converts a sequence of tokens in a single string.
|
121 |
+
"""
|
122 |
+
text = ""
|
123 |
+
temp = b""
|
124 |
+
for t in tokens:
|
125 |
+
if isinstance(t, str):
|
126 |
+
if temp:
|
127 |
+
text += temp.decode("utf-8", errors="ignore")
|
128 |
+
temp = b""
|
129 |
+
text += t
|
130 |
+
elif isinstance(t, bytes):
|
131 |
+
temp += t
|
132 |
+
else:
|
133 |
+
raise TypeError("token should only be of type bytes or str")
|
134 |
+
if temp:
|
135 |
+
text += temp.decode("utf-8", errors="ignore")
|
136 |
+
return self.deconvert(text)
|
137 |
+
|
138 |
+
def convert_id_to_token(self, idx):
|
139 |
+
return self.decoder[idx]
|
140 |
+
|
141 |
+
def convert_token_to_id(self, token):
|
142 |
+
return self.decoder_token2id[token]
|
143 |
+
|
144 |
+
def convert(self, text):
|
145 |
+
"""将文本的特殊字符转换成特殊token"""
|
146 |
+
for k in ["[br]", "<br>"]:
|
147 |
+
text = text.replace(k, "\n")
|
148 |
+
for k in self.sorted_strs:
|
149 |
+
if k in text:
|
150 |
+
text = text.replace(k, self.str2tokens[k])
|
151 |
+
return text
|
152 |
+
|
153 |
+
def deconvert(self, text):
|
154 |
+
"""将解码文本恢复原始字符"""
|
155 |
+
for t in self.token2strs:
|
156 |
+
if t in text:
|
157 |
+
text = text.replace(t, self.token2strs[t])
|
158 |
+
return text
|
159 |
+
|
160 |
+
|
161 |
+
class ZhinaoTokenizer(PreTrainedTokenizer):
|
162 |
+
vocab_files_names = {"vocab_file": "vocab/360.tiktoken"}
|
163 |
+
model_input_names = ["input_ids", "attention_mask"]
|
164 |
+
|
165 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
|
166 |
+
self.name = "ZhinaoTokenizer"
|
167 |
+
self.vocab_file = vocab_file
|
168 |
+
self.tokenizer = SPTokenizer(model_path=vocab_file)
|
169 |
+
try:
|
170 |
+
kwargs.pop('eos_token')
|
171 |
+
kwargs.pop('pad_token')
|
172 |
+
kwargs.pop('unk_token')
|
173 |
+
except:
|
174 |
+
pass
|
175 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
176 |
+
self.pad_token_id = self.tokenizer.convert_token_to_id(self.tokenizer.pad_token)
|
177 |
+
self.eod_id = self.tokenizer.convert_token_to_id(self.tokenizer.eod_token)
|
178 |
+
self.im_start_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_start_token)
|
179 |
+
self.im_end_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_end_token)
|
180 |
+
|
181 |
+
@property
|
182 |
+
def eop_token(self) -> str:
|
183 |
+
return self.tokenizer.eop_token
|
184 |
+
|
185 |
+
@property
|
186 |
+
def eop_token_id(self):
|
187 |
+
return self.tokenizer.convert_token_to_id(self.tokenizer.eop_token)
|
188 |
+
|
189 |
+
@property
|
190 |
+
def vocab_size(self):
|
191 |
+
return self.tokenizer.num_tokens
|
192 |
+
|
193 |
+
def get_vocab(self):
|
194 |
+
""" Returns vocab as a dict """
|
195 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
196 |
+
vocab.update(self.added_tokens_encoder)
|
197 |
+
return vocab
|
198 |
+
|
199 |
+
def tokenize(
|
200 |
+
self,
|
201 |
+
text: str,
|
202 |
+
allowed_special: Union[Set, str] = "all",
|
203 |
+
disallowed_special: Union[Collection, str] = (),
|
204 |
+
split_special_tokens=False,
|
205 |
+
) -> List[Union[bytes, str]]:
|
206 |
+
tokens = []
|
207 |
+
for t in self.tokenizer.encode(
|
208 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
209 |
+
):
|
210 |
+
tokens.append(self.tokenizer.decoder[t])
|
211 |
+
return tokens
|
212 |
+
|
213 |
+
def _decode(
|
214 |
+
self,
|
215 |
+
token_ids: Union[int, List[int]],
|
216 |
+
skip_special_tokens: bool = False,
|
217 |
+
errors: str = "ignore",
|
218 |
+
**kwargs,
|
219 |
+
) -> str:
|
220 |
+
if isinstance(token_ids, int):
|
221 |
+
token_ids = [token_ids]
|
222 |
+
if skip_special_tokens:
|
223 |
+
token_ids = [i for i in token_ids if i not in self.tokenizer.decode_skip_special_tokens_ids]
|
224 |
+
return self.tokenizer.decode(token_ids, errors=errors)
|
225 |
+
|
226 |
+
def _tokenize(self, text, **kwargs):
|
227 |
+
raise NotImplementedError
|
228 |
+
|
229 |
+
def _convert_token_to_id(self, token):
|
230 |
+
""" Converts a token (str) in an id using the vocab. """
|
231 |
+
return self.tokenizer.convert_token_to_id(token)
|
232 |
+
|
233 |
+
def _convert_id_to_token(self, index):
|
234 |
+
"""Converts an index (integer) in a token (str) using the vocab. """
|
235 |
+
return self.tokenizer.convert_id_to_token(index)
|
236 |
+
|
237 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
238 |
+
"""
|
239 |
+
Converts a sequence of tokens in a single string.
|
240 |
+
"""
|
241 |
+
return self.tokenizer.decode_tokens(tokens)
|
242 |
+
|
243 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
244 |
+
"""Save only the vocabulary of the tokenizer (vocabulary). """
|
245 |
+
if os.path.isdir(save_directory):
|
246 |
+
vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
|
247 |
+
else:
|
248 |
+
vocab_file = save_directory
|
249 |
+
|
250 |
+
with open(self.vocab_file, 'rb') as fin:
|
251 |
+
proto_str = fin.read()
|
252 |
+
|
253 |
+
os.makedirs(save_directory + "/vocab", exist_ok=True)
|
254 |
+
with open(vocab_file, "wb") as writer:
|
255 |
+
writer.write(proto_str)
|
256 |
+
|
257 |
+
return (vocab_file,)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenization_zhinao.ZhinaoTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
10 |
+
"clean_up_tokenization_spaces": false,
|
11 |
+
"do_lower_case": false,
|
12 |
+
"eos_token": "<eod>",
|
13 |
+
"model_max_length": 32768,
|
14 |
+
"pad_token": "<pad>",
|
15 |
+
"padding_side": "right",
|
16 |
+
"remove_space": false,
|
17 |
+
"tokenizer_class": "ZhinaoTokenizer",
|
18 |
+
"unk_token": "<unk>"
|
19 |
+
}
|
vocab/360.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|