metadata
library_name: stable-baselines3
tags:
- InvertedDoublePendulum-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: InvertedDoublePendulum-v2
type: InvertedDoublePendulum-v2
metrics:
- type: mean_reward
value: 6480.49 +/- 2508.74
name: mean_reward
verified: false
PPO Agent playing InvertedDoublePendulum-v2
This is a trained model of a PPO agent playing InvertedDoublePendulum-v2 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
pip install rl_zoo3
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env InvertedDoublePendulum-v2 -orga qgallouedec -f logs/
python -m rl_zoo3.enjoy --algo ppo --env InvertedDoublePendulum-v2 -f logs/
If you installed the RL Zoo3 via pip (pip install rl_zoo3
), from anywhere you can do:
python -m rl_zoo3.load_from_hub --algo ppo --env InvertedDoublePendulum-v2 -orga qgallouedec -f logs/
python -m rl_zoo3.enjoy --algo ppo --env InvertedDoublePendulum-v2 -f logs/
Training (with the RL Zoo)
python -m rl_zoo3.train --algo ppo --env InvertedDoublePendulum-v2 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env InvertedDoublePendulum-v2 -f logs/ -orga qgallouedec
Hyperparameters
OrderedDict([('batch_size', 512),
('clip_range', 0.4),
('ent_coef', 1.05057e-06),
('gae_lambda', 0.8),
('gamma', 0.98),
('learning_rate', 0.000155454),
('max_grad_norm', 0.5),
('n_envs', 1),
('n_epochs', 10),
('n_steps', 128),
('n_timesteps', 1000000.0),
('normalize', True),
('policy', 'MlpPolicy'),
('vf_coef', 0.695929),
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])