metascroy's picture
Update README.md
0d2b1b1 verified
|
raw
history blame
4.36 kB
metadata
library_name: transformers
license: mit
tags:
  - torchao

Quantization Recipe

We used following code to get the quantized model:

from transformers import (
    AutoModelForCausalLM,
    AutoProcessor,
    AutoTokenizer,
    TorchAoConfig,
)
from torchao.quantization.quant_api import (
    Int8DynamicActivationIntxWeightConfig,
)
from torchao.quantization.granularity import PerGroup
import torch

model_id = "microsoft/Phi-4-mini-instruct"
linear_config = Int8DynamicActivationIntxWeightConfig(
    weight_dtype=torch.int4,
    weight_granularity=PerGroup(32),
)
quantization_config = TorchAoConfig(quant_type=linear_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto", quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Push to hub
USER_ID = "YOUR_USER_ID"
save_to = f"{USER_ID}/phi4-mini-8dq4w"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)

# Manual testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])


# Save to disk
state_dict = quantized_model.state_dict()
torch.save(state_dict, "phi4-mini-8dq4w.pt")

Model Quality

We rely on lm-evaluation-harness to evaluate the quality of the quantized model.

baseline

lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8

8dq4w

import lm_eval
from lm_eval import evaluator
from lm_eval.utils import (
    make_table,
)

lm_eval_model = lm_eval.models.huggingface.HFLM(pretrained=quantized_model, batch_size=8)
results = evaluator.simple_evaluate(
    lm_eval_model, tasks=["hellaswag"], device="cuda:0", batch_size="auto"
)
print(make_table(results))
Benchmark
Phi-4 mini-Ins phi4-mini-8dq4w
Popular aggregated benchmark
Reasoning
HellaSwag 54.57 53.19
Multilingual
Math
Overall TODO TODO

Exporting to ExecuTorch

Exporting to ExecuTorch requires you clone and install ExecuTorch.

Convert quantized checkpoint to ExecuTorch's format

python -m executorch.examples.models.phi_4_mini.convert_weights phi4-mini-8dq4w.pt phi4-mini-8dq4w-converted.pt

Export to an ExecuTorch *.pte with XNNPACK

PARAMS="executorch/examples/models/phi_4_mini/config.json"
python -m executorch.examples.models.llama.export_llama \
  --model "phi_4_mini" \
  --checkpoint "phi4-mini-8dq4w-converted.pt" \
  --params "$PARAMS" \
  -kv \
  --use_sdpa_with_kv_cache \
  -X \
  --metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' \
  --output_name="phi4-mini-8dq4w.pte"

Run model with pybindings

export TOKENIZER="/path/to/tokenizer.json"
export TOKENIZER_CONFIG="/path/to/tokenizer_config.json"
export PROMPT="<|system|><|end|><|user|>Hey, are you conscious? Can you talk to me?<|end|><|assistant|>"
python -m executorch.examples.models.llama.runner.native \
  --model phi_4_mini \
  --pte phi4-mini-8dq4w.pte \
  -kv \
  --tokenizer ${TOKENIZER} \
  --tokenizer_config ${TOKENIZER_CONFIG} \
  --prompt "${PROMPT}" \
  --params "${PARAMS}" \
  --max_len 128 \
  --temperature 0