|
--- |
|
library_name: py-feat |
|
pipeline_tag: image-feature-extraction |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
|
|
# MP_Blendshapes |
|
|
|
## Model Description |
|
MP_Blendshapes has been ported to pytorch from Google's [mediapipe](https://github.com/google-ai-edge/mediapipe) library using Liam Schoneveld's github [repository](https://github.com/nlml/deconstruct-mediapipe). The inputs are 146/473 of mediapipe's FaceMeshV2 high density landmark model. The 52 blendshapes are similar to [ARKit Face Blendshapes](https://arkit-face-blendshapes.com/) and loosely correspond to Facial Action Unit Coding System. |
|
|
|
See the mediapipe [model card](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Blendshape%20V2.pdf) for more details. |
|
|
|
## Model Details |
|
- **Model Type**: MLP-Mixer (Keras) |
|
- **Framework**: pytorch |
|
|
|
## Model Sources |
|
- **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat) |
|
- **Model Card**: [Mediapipe blendshape model card](https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Blendshape%20V2.pdf) |
|
- **Paper**: [Attention mesh: High-fidelity face mesh prediction in real-time](https://arxiv.org/abs/2006.10962) |
|
|
|
## Citation |
|
If you use the mp_blendshapes model in your research or application, please cite the following paper: |
|
|
|
Grishchenko, I., Ablavatski, A., Kartynnik, Y., Raveendran, K., & Grundmann, M. (2020). Attention mesh: High-fidelity face mesh prediction in real-time. arXiv preprint arXiv:2006.10962. |
|
|
|
``` |
|
@article{grishchenko2020attention, |
|
title={Attention mesh: High-fidelity face mesh prediction in real-time}, |
|
author={Grishchenko, Ivan and Ablavatski, Artsiom and Kartynnik, Yury and Raveendran, Karthik and Grundmann, Matthias}, |
|
journal={arXiv preprint arXiv:2006.10962}, |
|
year={2020} |
|
} |
|
``` |
|
|
|
## Example Useage |
|
|
|
```python |
|
import torch |
|
import pandas as pd |
|
from huggingface_hub import hf_hub_download |
|
from feat.au_detectors.MP_Blendshapes.MP_Blendshapes_test import MediaPipeBlendshapesMLPMixer |
|
from feat.utils import MP_BLENDSHAPE_MODEL_LANDMARKS_SUBSET, MP_BLENDSHAPE_NAMES |
|
|
|
device = 'cpu' |
|
|
|
# Load model and weights |
|
blendshape_detector = MediaPipeBlendshapesMLPMixer() |
|
model_path = hf_hub_download(repo_id="py-feat/mp_blendshapes", filename="face_blendshapes.pth") |
|
blendshape_model_file = hf_hub_download(repo_id='py-feat/resmasknet', filename="ResMaskNet_Z_resmasking_dropout1_rot30.pth") |
|
blendshape_checkpoint = torch.load(blendshape_model_file, map_location=device)["net"] |
|
blendshape_detector.load_state_dict(blendshape_checkpoint) |
|
blendshape_detector.eval() |
|
blendshape_detector.to(device) |
|
|
|
|
|
# Test model |
|
face_image = "path/to/your/test_image.jpg" # Replace with your extracted face image that is [224, 224] |
|
|
|
# Extract Landmarks |
|
landmark_detector = torch.load('/Users/lukechang/Dropbox/py-feat/mediapipe/model/face_landmarks_detector_Nx3x256x256_onnx.pth', weights_only=False) |
|
landmark_detector.eval() |
|
landmark_detector.to(device) |
|
landmark_results = landmark_detector(torch.tensor(face_image).to(device)) |
|
|
|
# Blendshape Classification |
|
landmarks = landmark_results[0].reshape(1,478,3)[:,:,:2] |
|
img_size = torch.tensor((face_image_width, face_image_height)).unsqueeze(0).unsqueeze(0) |
|
landmarks = landmarks * img_size |
|
blendshapes = blendshape_detector(landmarks) |
|
blendshape_results = pd.Series(blendshape_results.squeeze().detach().numpy(), index=BLENDSHAPE_NAMES) |
|
|
|
``` |