Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: microsoft/Phi-3-mini-4k-instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: ptoro/honkers-phi
    type: alpaca

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/rosie-phi-3

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: axolotl-june
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000003

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
  pad_token: "<|endoftext|>"

outputs/rosie-phi-3

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
6.5549 0.0004 1 7.5396
2.0538 0.25 703 5.0590
3.6188 0.5 1406 4.4457
2.8575 0.75 2109 4.2136
2.8208 1.0 2812 4.1741

Framework versions

  • PEFT 0.11.2.dev0
  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ptoro/phi-3-rosie-overfit-experiment

Adapter
(470)
this model