BL-pythia-31m-simplepile-lite-2048-scratch

Train from scratch based on config of EleutherAI/pythia-31m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9891
  • Accuracy: 0.3498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 80085
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.4089 0.07 100 7.3885 0.1133
6.2774 0.13 200 6.2091 0.1621
5.7019 0.2 300 5.7450 0.1890
5.4922 0.27 400 5.4697 0.2080
5.233 0.33 500 5.2846 0.2195
5.0523 0.4 600 5.1479 0.2296
4.9396 0.47 700 5.0391 0.2376
4.7633 0.53 800 4.9366 0.2458
4.7516 0.6 900 4.8339 0.2559
4.5937 0.67 1000 4.7286 0.2676
4.5079 0.73 1100 4.6293 0.2798
4.4608 0.8 1200 4.5433 0.2903
4.3426 0.87 1300 4.4719 0.2988
4.1722 0.93 1400 4.4089 0.3057
4.1655 1.0 1500 4.3585 0.3107
4.0927 1.07 1600 4.3101 0.3161
4.1439 1.13 1700 4.2714 0.3206
4.0064 1.2 1800 4.2330 0.3249
4.0633 1.27 1900 4.2015 0.3281
3.9948 1.33 2000 4.1702 0.3311
3.9389 1.4 2100 4.1439 0.3338
3.8833 1.47 2200 4.1200 0.3367
3.8411 1.53 2300 4.0949 0.3395
3.8481 1.6 2400 4.0764 0.3408
3.8397 1.67 2500 4.0578 0.3420
3.8897 1.73 2600 4.0383 0.3440
3.8785 1.8 2700 4.0206 0.3459
3.8126 1.87 2800 4.0044 0.3478
3.783 1.93 2900 3.9891 0.3498

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.2.0.dev20230907+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 24.7
ARC (25-shot) 21.59
HellaSwag (10-shot) 25.79
MMLU (5-shot) 24.99
TruthfulQA (0-shot) 50.62
Winogrande (5-shot) 48.62
GSM8K (5-shot) 0.0
DROP (3-shot) 1.32
Downloads last month
1,173
Safetensors
Model size
30.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pszemraj/pythia-31m-simplepile-lite-2048-scratch-2e

Quantizations
1 model

Dataset used to train pszemraj/pythia-31m-simplepile-lite-2048-scratch-2e