metadata
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- persimmon
perSLIMmon-8b-base
persimmon-8b went to the vocab lipo clinic
A slimmed-down version of persimmon-8b-base which removes the ~70,000 unused entries in the model vocabulary and tokenizer (see the safetensors layer overview). Should be slightly faster.
Credit: fine-tune-fuyu (scripts/surgery.py
was adapted for persimmon)
inference
install required pkgs:
pip install -U transformers accelerate bitsandbytes sentencepiece
load in 4bit & run inference:
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("pszemraj/perSLIMmon-8b-base")
model = AutoModelForCausalLM.from_pretrained(
"pszemraj/perSLIMmon-8b-base",
load_in_4bit=True, # GPU required
torch_dtype="auto",
device_map="auto",
)
inputs = tokenizer("The weather is always wonderful", return_tensors="pt").to(
model.device
)
tokens = model.generate(
**inputs,
max_new_tokens=64,
temperature=0.75,
top_p=0.95,
epsilon_cutoff=1e-5,
repetition_penalty=1.05,
renormalize_logits=True,
do_sample=True,
) # adapt inference params as needed
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
inference is decently fast on a colab T4:
CPU times: user 6.01 s, sys: 138 ms, total: 6.15 s
Wall time: 6.23 s