paraphrase-MiniLM-L12-v2-CoLA

This model is a fine-tuned version of sentence-transformers/paraphrase-MiniLM-L12-v2 on the GLUE COLA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4636
  • Matthews Correlation: 0.5057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 30198
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 16.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Matthews Correlation
0.5747 1.0 67 0.5394 0.3455
0.5025 2.0 134 0.4999 0.4270
0.3698 3.0 201 0.4636 0.5057
0.2969 4.0 268 0.5309 0.4751
0.2275 5.0 335 0.6238 0.4775
0.1859 6.0 402 0.6315 0.4867
0.1517 7.0 469 0.7783 0.4695
0.1016 8.0 536 0.6762 0.4901
0.1017 9.0 603 0.7412 0.5046
0.0898 10.0 670 0.7719 0.4877
0.0527 11.0 737 0.8627 0.4955
0.0582 12.0 804 0.8986 0.4738
0.074 13.0 871 0.9469 0.4942
0.0508 14.0 938 0.9436 0.4918
0.024 15.0 1005 0.9391 0.4919
0.0458 16.0 1072 0.9375 0.4946

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.1
Downloads last month
11
Safetensors
Model size
33.4M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train pszemraj/paraphrase-MiniLM-L12-v2-CoLA

Evaluation results