pszemraj's picture
Update README.md
6d4035b
|
raw
history blame
14.1 kB
---
license:
- apache-2.0
- bsd-3-clause
tags:
- summarization
- summary
- booksum
- long-document
- long-form
- tglobal-xl
- XL
datasets:
- kmfoda/booksum
metrics:
- rouge
inference: false
model-index:
- name: pszemraj/long-t5-tglobal-xl-16384-book-summary
results:
- task:
type: summarization
name: Summarization
dataset:
name: multi_news
type: multi_news
config: default
split: test
metrics:
- type: rouge
value: 36.2043
name: ROUGE-1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzRmMmUyOTVjMmJmZTRiZDcyYzY3MTQ1MmUyNDA5NjVhYzEzYzBiNzcxYTRhMDQ3OTlhMGZjYmJlNDM1M2NjYyIsInZlcnNpb24iOjF9._uArOQ1_0znXDPXMq7unA1OHB-XbgqzzKRbFRcVUzTUJdWk26LiSa2pEEVNNmJPg6Uo7CAvONmhpEswLvl9TAg
- type: rouge
value: 8.424
name: ROUGE-2
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzg0MzljYjVjYWQ3MmRkZDBlOGI5M2RiMGU0M2UwZGUzMDg2NTU0NjcwMTNiN2ZmODEzNTQ0MmEwNDA3NDA5MSIsInZlcnNpb24iOjF9.Dzj85ld6TjosQ8KyUdoadzicMLedEFrICC6Q-08O3qx28d9B9Uke1zw-VWabiuesPEDTRGbWuBgPA5vxYWUZAw
- type: rouge
value: 17.3721
name: ROUGE-L
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDA3ZjZmODAwMTNlM2RlZmJlMDI5MGVkMGRkMTBjMTYzNDk5ZjFiNTY5MWE1MDUwNWI2MDE4ZDA2YWMwMmI2NCIsInZlcnNpb24iOjF9.MOV_nId0XAK1eMQssG5GN9DsitZaTrxl4jdCJnOg9EZ0-vAw227ln599YV5YfZ1OPJnWwek6rneqqyONiHn9AQ
- type: rouge
value: 32.3994
name: ROUGE-LSUM
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmY3MDMwOTZjNWI0YTk1MDgwMzJkYTFiN2U5YWU0Mzc0MWRiMzc1NzZlMDhjMWUwMmY2ODI2MjI5ODBkYWUxOSIsInZlcnNpb24iOjF9._BwGIZbcA4pUBkEAL0cW-JPPta0KSoGug4Z7vogHacUz-AEhIOI5ICUldZh0pt9OK67MpUSzpShJOu3rSt5YDQ
- type: loss
value: 2.0843334197998047
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWFhMmE5ZjA3ODM4YmVjMDMyMjk5YjNlMjA1MGMzOWY0NTRlYzk1YjZiMzQxMDMxOTMwMjFkNTdmNjM1NDcyMyIsInZlcnNpb24iOjF9.3wbXV4CIIgnfXAnnRztdOR12PwsWsEfiglQQ09K-C1EgW4gai4x9l-wTE2OZ7CTWkuk_tr4tL_uqOCXLZRMtCQ
- type: gen_len
value: 248.3572
name: gen_len
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWZhOGMwMDJjNGU2MzA2YzI1OWU1ZDY5N2NjZmM1YTA5NDg1MzUwNmU1YTBhNjQyNWYwYzA3OGNmODFjMmE2NSIsInZlcnNpb24iOjF9.Rc9u89zCdbFnjsnmq65l_JvCtUwOX_ZWapKJpTZ-rC8HxcUVfi2Ash2QfvvvxHH_YWhwklxxdnNa0HCm46qLAA
- task:
type: summarization
name: Summarization
dataset:
name: billsum
type: billsum
config: default
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 41.3645
verified: true
- name: ROUGE-2
type: rouge
value: 16.144
verified: true
- name: ROUGE-L
type: rouge
value: 24.2981
verified: true
- name: ROUGE-LSUM
type: rouge
value: 35.3234
verified: true
- name: loss
type: loss
value: 1.282260775566101
verified: true
- name: gen_len
type: gen_len
value: 291.8158
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: ccdv/arxiv-summarization
type: ccdv/arxiv-summarization
config: document
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 36.3225
verified: true
- name: ROUGE-2
type: rouge
value: 9.3743
verified: true
- name: ROUGE-L
type: rouge
value: 19.8396
verified: true
- name: ROUGE-LSUM
type: rouge
value: 32.2532
verified: true
- name: loss
type: loss
value: 2.146871566772461
verified: true
- name: gen_len
type: gen_len
value: 186.2966
verified: true
---
# long-t5-tglobal-xl + BookSum
<a href="https://colab.research.google.com/gist/pszemraj/c19e32baf876deb866c31cd46c86e893/long-t5-xl-accelerate-test.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
Summarize long text and get a SparkNotes-like summary of any topic!
- Generalizes reasonably well to academic & narrative text.
- This is the XL checkpoint, which **produces even better summaries [from a human evaluation perspective](https://long-t5-xl-book-summary-examples.netlify.app/)**.
A simple example/use case with [the base model](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) on ASR is [here](https://longt5-booksum-example.netlify.app/).
## Cheeky Proof-of-Concept
A summary of the [infamous navy seals copypasta](https://knowyourmeme.com/memes/navy-seal-copypasta):
> In this chapter, the monster explains how he intends to exact revenge on "the little b\*\*\*\*" who insulted him. He tells the kiddo that he is a highly trained and experienced killer who will use his arsenal of weapons--including his access to the internet--to exact justice on the little brat.
While this is a crude example, try running this copypasta through other summarization models to see the difference in comprehension (_even though it's not even a "long" text!_).
* * *
**Contents**
<!-- TOC -->
- [Description](#description)
- [How-To in Python](#how-to-in-python)
- [Beyond the basics](#beyond-the-basics)
- [Adjusting parameters](#adjusting-parameters)
- [LLM.int8 Quantization](#llmint8-quantization)
- [About](#about)
- [Intended uses & limitations](#intended-uses--limitations)
- [Training and evaluation data](#training-and-evaluation-data)
- [Eval results](#eval-results)
- [FAQ](#faq)
- [How can I run inference with this on CPU?](#how-can-i-run-inference-with-this-on-cpu)
- [How to run inference over a very long (30k+ tokens) document in batches?](#how-to-run-inference-over-a-very-long-30k-tokens-document-in-batches)
- [How to fine-tune further?](#how-to-fine-tune-further)
- [Are there simpler ways to run this?](#are-there-simpler-ways-to-run-this)
- [Training procedure](#training-procedure)
- [Updates](#updates)
- [Training hyperparameters](#training-hyperparameters)
- [Framework versions](#framework-versions)
<!-- /TOC -->
* * *
## Description
A fine-tuned version of [google/long-t5-tglobal-xl](https://huggingface.co/google/long-t5-tglobal-xl) on the `kmfoda/booksum` dataset.
Read the paper by Guo et al. here: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/pdf/2112.07916.pdf)
## How-To in Python
install/update transformers `pip install -U transformers`
summarize text with pipeline:
```python
import torch
from transformers import pipeline
summarizer = pipeline(
"summarization",
"pszemraj/long-t5-tglobal-xl-16384-book-summary",
device=0 if torch.cuda.is_available() else -1,
)
long_text = "Here is a lot of text I don't want to read. Replace me"
result = summarizer(long_text)
print(result[0]["summary_text"])
```
### Beyond the basics
There are two additional points to consider beyond simple inference: adjusting decoding parameters for improved performance, and quantization for reduced memory consumption.
#### Adjusting parameters
Pass [other parameters related to beam search textgen](https://huggingface.co/blog/how-to-generate) when calling `summarizer` to get even higher quality results.
#### LLM.int8 Quantization
> alternative section title: how to get this monster to run inference on free colab runtimes
Via [this PR](https://github.com/huggingface/transformers/pull/20341) LLM.int8 is now supported for `long-t5` models.
- per **initial tests** the summarization quality seems to hold while using _significantly_ less memory! \*
- a version of this model quantized to int8 is [already on the hub here](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-book-summary-8bit) so if you're using the 8-bit version anyway, you can start there for a 3.5 gb download only!
First, make sure you have the latest versions of the relevant packages:
```bash
pip install -U transformers bitsandbytes accelerate
```
load in 8-bit (_magic completed by `bitsandbytes` behind the scenes_)
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained(
"pszemraj/long-t5-tglobal-xl-16384-book-summary"
)
model = AutoModelForSeq2SeqLM.from_pretrained(
"pszemraj/long-t5-tglobal-xl-16384-book-summary",
load_in_8bit=True,
device_map="auto",
)
```
The above is already present in the Colab demo linked at the top of the model card.
\* More rigorous metrics-based research comparing beam-search summarization with and without LLM.int8 will take place over time.
* * *
## About
### Intended uses & limitations
While this model seems to improve factual consistency, **don't take summaries as foolproof and check things that seem odd**.
Specifically: negation statements (i.e., the model says: _this thing does not have [ATTRIBUTE]_, when instead it should have said _this thing has lots of [ATTRIBUTE]_).
- I'm sure someone will write a paper on this eventually (if there isn't one already), but you can usually check this by comparing a particular statement with what the surrounding sentences imply.
### Training and evaluation data
`kmfoda/booksum` dataset on HuggingFace - read [the original paper here](https://arxiv.org/abs/2105.08209).
- For **initial fine-tuning**, only input text with 12288 input tokens or less and 1024 output tokens or less was used (_i.e. lines longer than that were dropped before training_) for memory reasons. After a quick analysis, summaries in the 12288-16384 range are in the **small** minority in this dataset.
- In addition, this initial training combined the training and validation sets and trained on them in aggregate to increase the functional dataset size. **Therefore, take the validation set results with a grain of salt; primary metrics should (always) be the test set.**.
- The **final stages of fine-tuning** used the standard 16384 input/1024 output conventions, preserving the standard in/out lengths (_and truncating longer sequences_). This did not seem to change the loss/performance much.
### Eval results
Official results with the [model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator) will be computed and posted here.
**Please read the note above, as due to the training methods, the performance on the validation set looks better than the results on the test set will be**. The model achieves the following results on the evaluation set:
- eval_loss: 1.2756
- eval_rouge1: 41.8013
- eval_rouge2: 12.0895
- eval_rougeL: 21.6007
- eval_rougeLsum: 39.5382
- eval_gen_len: 387.2945
- eval_runtime: 13908.4995
- eval_samples_per_second: 0.107
- eval_steps_per_second: 0.027
***** predict/test metrics (initial) *****
predict_gen_len = 506.4368
predict_loss = 2.028
predict_rouge1 = 36.8815
predict_rouge2 = 8.0625
predict_rougeL = 17.6161
predict_rougeLsum = 34.9068
predict_runtime = 2:04:14.37
predict_samples = 1431
predict_samples_per_second = 0.192
predict_steps_per_second = 0.048
\* evaluating big model not as easy as it seems. Doing a bit more investigating
* * *
## FAQ
### How can I run inference with this on CPU?
lol
### How to run inference over a very long (30k+ tokens) document in batches?
See `summarize.py` in [the code for my hf space Document Summarization](https://huggingface.co/spaces/pszemraj/document-summarization/blob/main/summarize.py) :)
You can also use the same code to split a document into batches of 4096, etc., and iterate over them with the model. This is useful in situations where CUDA memory is limited.
**Update:** see the section on the `textsum` package below.
### How to fine-tune further?
See [train with a script](https://huggingface.co/docs/transformers/run_scripts) and [the summarization scripts](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization)
### Are there simpler ways to run this?
For this reason, I created a Python package utility. It's called [textsum](https://github.com/pszemraj/textsum), and you can use it to load models and summarize things in a few lines of code.
```sh
pip install textsum
```
Use `textsum` in python with this model:
```python
from textsum.summarize import Summarizer
summarizer = Summarizer(
model_name_or_path="pszemraj/long-t5-tglobal-xl-16384-book-summary"
)
long_string = "This is a long string of text that will be summarized."
out_str = summarizer.summarize_string(long_string)
print(f"summary: {out_str}")
```
This package provides easy-to-use interfaces for applying summarization models to text documents of arbitrary length. Currently implemented interfaces include a Python API, a CLI, and a shareable demo application.
For details, explanations, and documentation, see the README (_linked above_) or the [wiki](https://github.com/pszemraj/textsum/wiki).
* * *
## Training procedure
### Updates
Updates to this model/model card will be posted here when relevant. The model seems to be fairly converged; if updates/improvements are possible using the `BookSum` dataset, this repo will be updated.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 1
- eval_batch_size: 1
- seed: 10350
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 1.0
\*_Prior training sessions used roughly similar parameters (learning rates were higher); multiple sessions were required as this takes eons to train._
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1
* * *