deberta-v3-base-unified-mcqa-2-choice
If finetuning this further on downstream tasks (classification, etc) you may need to pass
ignore_mismatched_sizes=True
when loading this model.
This model is a fine-tuned version of microsoft/deberta-v3-base on the pszemraj/unified-mcqa dataset. It achieves the following results on the evaluation set:
- Loss: 0.3384
- Accuracy: 0.9010
- Num Input Tokens Seen: 15919768
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 69
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
---|---|---|---|---|---|
0.3639 | 0.4579 | 400 | 0.3093 | 0.8700 | 2444384 |
0.308 | 0.9157 | 800 | 0.2792 | 0.8920 | 4861008 |
0.2517 | 1.3732 | 1200 | 0.2989 | 0.8890 | 7293776 |
0.2399 | 1.8310 | 1600 | 0.2796 | 0.8990 | 9723744 |
0.1082 | 2.2885 | 2000 | 0.3557 | 0.9030 | 12157608 |
0.1269 | 2.7463 | 2400 | 0.3486 | 0.8980 | 14592584 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for pszemraj/deberta-v3-base-unified-mcqa-2-choice
Base model
microsoft/deberta-v3-base