deberta-v3-base-unified-mcqa-2-choice

If finetuning this further on downstream tasks (classification, etc) you may need to pass ignore_mismatched_sizes=True when loading this model.

This model is a fine-tuned version of microsoft/deberta-v3-base on the pszemraj/unified-mcqa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3384
  • Accuracy: 0.9010
  • Num Input Tokens Seen: 15919768

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 69
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Input Tokens Seen
0.3639 0.4579 400 0.3093 0.8700 2444384
0.308 0.9157 800 0.2792 0.8920 4861008
0.2517 1.3732 1200 0.2989 0.8890 7293776
0.2399 1.8310 1600 0.2796 0.8990 9723744
0.1082 2.2885 2000 0.3557 0.9030 12157608
0.1269 2.7463 2400 0.3486 0.8980 14592584

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
23
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pszemraj/deberta-v3-base-unified-mcqa-2-choice

Finetuned
(357)
this model

Dataset used to train pszemraj/deberta-v3-base-unified-mcqa-2-choice