|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: depth-estimation |
|
tags: |
|
- monocular depth estimation |
|
- single image depth estimation |
|
- depth |
|
- in-the-wild |
|
- zero-shot |
|
- depth |
|
- LCM |
|
--- |
|
# Marigold: Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation |
|
|
|
This model represents the official LCM checkpoint of the paper titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation". |
|
|
|
[![Website](doc/badges/badge-website.svg)](https://marigoldmonodepth.github.io) |
|
[![GitHub](https://img.shields.io/github/stars/prs-eth/Marigold?style=default&label=GitHub%20β
&logo=github)](https://github.com/prs-eth/Marigold) |
|
[![Paper](doc/badges/badge-pdf.svg)](https://arxiv.org/abs/2312.02145) |
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12G8reD13DdpMie5ZQlaFNo2WCGeNUH-u?usp=sharing) |
|
[![Hugging Face (LCM) Space](https://img.shields.io/badge/π€%20Hugging%20Face(LCM)-Space-yellow)](https://huggingface.co/spaces/prs-eth/marigold-lcm) |
|
[![License](https://img.shields.io/badge/License-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0) |
|
<!-- [![HF Space](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space-blue)]() --> |
|
<!-- [![Open In Colab](doc/badges/badge-colab.svg)]() --> |
|
<!-- [![Docker](doc/badges/badge-docker.svg)]() --> |
|
<!-- ### [Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation]() --> |
|
|
|
[Bingxin Ke](http://www.kebingxin.com/), |
|
[Anton Obukhov](https://www.obukhov.ai/), |
|
[Shengyu Huang](https://shengyuh.github.io/), |
|
[Nando Metzger](https://nandometzger.github.io/), |
|
[Rodrigo Caye Daudt](https://rcdaudt.github.io/), |
|
[Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en ) |
|
|
|
We present Marigold, a diffusion model and associated fine-tuning protocol for monocular depth estimation. Its core principle is to leverage the rich visual knowledge stored in modern generative image models. Our model, derived from Stable Diffusion and fine-tuned with synthetic data, can zero-shot transfer to unseen data, offering state-of-the-art monocular depth estimation results. |
|
|
|
![teaser](doc/teaser_collage_transparant.png) |
|
|
|
|
|
## π Citation |
|
|
|
```bibtex |
|
@InProceedings{ke2023repurposing, |
|
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation}, |
|
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler}, |
|
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## π« License |
|
|
|
This work is licensed under the Apache License, Version 2.0 (as defined in the [LICENSE](LICENSE.txt)). |
|
|
|
By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE.txt). |
|
|
|
[![License](https://img.shields.io/badge/License-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0) |
|
|