|
--- |
|
license: mit |
|
--- |
|
**Model Description** |
|
|
|
Model created with OpenNMT-py 3.2 for the Spanish-Aragonese pair using a transformer architecture. The model was converted to the ctranslate2 format. |
|
This model was trained for the paper Training and fine-tuning NMT models for low-resource languages using Apertium-based synthetic corpora |
|
|
|
**How to Translate with this Model** |
|
|
|
+ Install [Python 3.9](https://www.python.org/downloads/release/python-390/) |
|
+ Install [ctranslate 3.2](https://github.com/OpenNMT/CTranslate2) |
|
+ Translate an input_text using the NOS-MT-es-arn model with the following command: |
|
```bash |
|
perl tokenizer.perl < input.txt > input.tok |
|
``` |
|
```bash |
|
subword_nmt.apply_bpe -c ./bpe/es.bpe < input.tok > input.bpe |
|
``` |
|
```bash |
|
python3 translate.py ./ct2-arn input.bpe > output.txt |
|
``` |
|
```bash |
|
sed -i 's/@@ //g' output.txt |
|
``` |
|
|
|
## Citation |
|
|
|
If you use this model in your research, please cite the following paper: |
|
Sant, A., Bardanca Outeiri帽o, D., Pichel Campos, J. R., De Luca Fornaciari, F., Escolano, C., Garc铆a Gilabert, J., Gamallo Otero, P., Mash, A., Liao, X., & Melero, M. (2023). Training and fine-tuning NMT models for low-resource languages using Apertium-based synthetic corpora. arXiv. |