FLOR-6.3B Model optimized for QA

Table of Contents

Click to expand

Model description

FlorQARAG is a 6.3B-parameter transformer-based causal language model for Catalan, Spanish, and English, trained on a customized QA dataset from various sources especifically to be used in RAG (Retrieval-Aumented Generation) Applications. The dataset used to fine tune the model is: PureInstructQA

Intended uses and limitations

The FlorQARAG model is ready-to-use for RAG applications optimized for Catalan language. It can perform text-generation Question Answering in the context of RAG applications.

How to use

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="projecte-aina/FlorQARAG")

instruction = "Quants habitants t茅 Matar贸?"

context = "Matar贸 茅s una ciutat de Catalunya, capital de la comarca del Maresme. Situada al litoral mediterrani, a uns 30 km al nord-est de Barcelona, ha estat tradicionalment un centre administratiu de rellev脿ncia territorial i un pol de dinamisme econ貌mic. Compta amb prop de 130.000 habitants, essent actualment la vuitena poblaci贸 del Principat i la tretzena dels Pa茂sos Catalans. "

# We need to format the prompt and context using ### and \n

def givePrediction(instruction, context, max_new_tokens=50, repetition_penalty=1.2, top_k=50, top_p=0.95, do_sample=True, temperature=0.5)
    text = f"### Instruction\n{{instruction}}\n### Context\n{{context}}\n### Answer\n"
    response = pipe(text.format(instruction=instruction, context=context),temperature=temperature,repetition_penalty=repetition_penalty, max_new_tokens=max_new_tokens,top_k=top_k, top_p=top_p, do_sample=do_sample)[0]["generated_text"]
    answer = response.split("###")[-1][8:-1]
    return answer

answer = givePrediction(instruction, context)

print(answer)
'130 000'

Limitations and bias

At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.

Training

Instruction Data

The training corpus is composed of 82,539 QA instruction following examples. See Data Card at PureInstructQA.

Additional information

Author

The Language Technologies Unit from Barcelona Supercomputing Center.

Contact

For further information, please send an email to [email protected].

Copyright

Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.

License

Apache License, Version 2.0

Funding

This work was funded by Departament de la Vicepresid猫ncia i de Pol铆tiques Digitals i Territori de la Generalitat de Catalunya within the framework of Projecte AINA.

Disclaimer

Click to expand

The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0.

Be aware that the model may have biases and/or any other undesirable distortions.

When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence.

In no event shall the owner and creator of the model (Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties.

Downloads last month
16
Safetensors
Model size
6.25B params
Tensor type
FP16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.