vit-base-v1-eval-epoch-maxgrad-decay-cosine

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2420
  • Accuracy: 0.7032

Model description

Detects the 14 highest mountains in the world

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0001 0.9903 51 1.0182 0.7898
0.0027 2.0 103 1.4837 0.6688
0.0076 2.9903 154 1.2528 0.7420
0.0001 4.0 206 1.2986 0.7325
0.0007 4.9903 257 1.2049 0.7261
0.0001 6.0 309 1.1404 0.7707
0.0 6.9903 360 1.1531 0.7675
0.0 8.0 412 1.1605 0.7643
0.0 8.9903 463 1.1647 0.7643
0.0 10.0 515 1.1668 0.7675
0.0 10.9903 566 1.1690 0.7707
0.0 12.0 618 1.1702 0.7739
0.0 12.9903 669 1.1707 0.7739
0.0 14.0 721 1.1711 0.7739
0.0 14.8544 765 1.1710 0.7739

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
12
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for priyamarwaha/vit-base-v1-eval-epoch-maxgrad-decay-cosine

Finetuned
(539)
this model

Evaluation results