File size: 10,375 Bytes
8091196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291ccb
8091196
 
 
 
 
 
 
 
 
 
5607605
8091196
5607605
8091196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
license: creativeml-openrail-m
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
tags:
- triangulum_10b
- sft
- chain_of_thought
- ollama
- text-generation-inference
- llama_for_causal_lm
- reasoning
- CoT
library_name: transformers
metrics:
- code_eval
- accuracy
- competition_math
- character
---
![By0OJ1lMvP5ZvVvfEGvz5.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/pRVBojKiFZLtoEiwQgsY8.png)

<pre align="center">
  __           .__                                .__                   
_/  |_ _______ |__|_____     ____    ____   __ __ |  |   __ __   _____  
\   __\\_  __ \|  |\__  \   /    \  / ___\ |  |  \|  |  |  |  \ /     \ 
 |  |   |  | \/|  | / __ \_|   |  \/ /_/  >|  |  /|  |__|  |  /|  Y Y  \
 |__|   |__|   |__|(____  /|___|  /\___  / |____/ |____/|____/ |__|_|  /
                        \/      \//_____/                            \/ 
</pre>

# **Triangulum 10B it: Multilingual Large Language Models (LLMs)**

Triangulum 10B it Base is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.

# **Key Features**

- **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance.

- **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety.

- **Multilingual Support**: Designed to handle multiple languages, ensuring broad applicability across diverse linguistic contexts.

# **Training Approach**

1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities.
2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets.
3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes.

# **How to use with transformers**

Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.

Make sure to update your transformers installation via `pip install --upgrade transformers`.

```python
import torch
from transformers import pipeline

model_id = "prithivMLmods/Triangulum-10B"
pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."},
    {"role": "user", "content": "Who are you?"},
]
outputs = pipe(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
# **Demo Inference LlamaForCausalLM**
```python
import torch
from transformers import AutoTokenizer, LlamaForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-10B', trust_remote_code=True)
model = LlamaForCausalLM.from_pretrained(
    "prithivMLmods/Triangulum-10B",
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_8bit=False,
    load_in_4bit=True,
    use_flash_attention_2=True
)

# Define a list of system and user prompts
prompts = [
    """<|im_start|>system
You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|>
<|im_start|>user
Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|>
<|im_start|>assistant"""
]

# Generate responses for each prompt
for chat in prompts:
    print(f"Prompt:\n{chat}\n")
    input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
    generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
    print(f"Response:\n{response}\n{'-'*80}\n")
```

# **Key Adjustments**
1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt.
2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice.
3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility.

You can expand the list of prompts to explore a variety of scenarios and responses.
# **Use Cases for T10B**

- Multilingual content generation
- Question answering and dialogue systems
- Text summarization and analysis
- Translation and localization tasks
  
# **Technical Details**

Triangulum 10B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases.

# **How to Run Triangulum 10B on Ollama Locally**

```markdown
# How to Run Ollama Locally

This guide demonstrates the power of using open-source LLMs locally, showcasing examples with different open-source models for various use cases. By the end, you'll be equipped to run any future open-source LLM models with ease.

---

## Example 1: How to Run the Triangulum-10B Model

The **Triangulum-10B** model is an open-source LLM known for its capabilities across text-based tasks. We'll interact with it similarly to ChatGPT, but run it locally with support for quants.

### Step 1: Download the Model

First, download the **Triangulum-10B-F16.gguf** model using the following command:

```bash
ollama run triangulum-10b-f16.gguf
```

### Step 2: Model Initialization and Download

Upon running the command, Ollama will initialize and download the model files. You should see output similar to the following:

```plaintext
pulling manifest
pulling 8934d96d3f08... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 3.8 GB
pulling 8c17c2ebb0ea... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 7.0 KB
pulling 7c23fb36d801... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 4.8 KB
pulling 2e0493f67d0c... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   59 B
pulling fa304d675061... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   91 B
pulling 42ba7f8a01dd... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  557 B
verifying sha256 digest
writing manifest
removing any unused layers
success
>>> Send a message (/? for help)
```

### Step 3: Interact with the Model

Once the model is ready, you can send a prompt. For example, let's ask:

```plaintext
>>> What can you do for me?
```

If you asked the same question, you should receive a response like this:

```plaintext
As a responsible AI language model, I am here to assist you with any questions or tasks you may have. Here are some examples of things I can help with:

1. Answering questions: I can provide information on a wide range of topics, from science and technology to history and culture.
2. Generating ideas: I can help you brainstorm ideas for creative projects, or provide suggestions for solving problems.
3. Writing assistance: I can help you with writing tasks such as proofreading, editing, and suggesting alternative words or phrases.
4. Translation: I can translate text from one language to another.
5. Summarizing content: I can summarize long pieces of text, such as articles or documents, into shorter, more digestible versions.
6. Creativity: I can help you generate creative ideas for stories, poems, or other forms of writing.
7. Language learning: I can assist you in learning a new language by providing grammar explanations, vocabulary lists, and practice exercises.
8. Chatting: I'm here to chat with you and provide a response to any question or topic you'd like to discuss.

Please let me know if there is anything specific you would like me to help you with.
```

### Step 4: Exit the Program

To exit the program, simply type:

```plaintext
/exit
```

## Example 2: Running Multi-Modal Models (Future Use)

Ollama supports running multi-modal models where you can send images and ask questions based on them. This section will be updated as more models become available.

## Notes on Using Quantized Models

Quantized models like **triangulum-10b-f16.gguf** are optimized for performance on resource-constrained hardware, making it accessible for local inference.

1. Ensure your system has sufficient VRAM or CPU resources.
2. Use the `.gguf` model format for compatibility with Ollama.

# **Conclusion**

Running the **Triangulum-10B** model with Ollama provides a robust way to leverage open-source LLMs locally for diverse use cases. By following these steps, you can explore the capabilities of other open-source models in the future.