prithivMLmods commited on
Commit
8091196
Β·
verified Β·
1 Parent(s): 5022fea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +222 -3
README.md CHANGED
@@ -1,3 +1,222 @@
1
- ---
2
- license: creativeml-openrail-m
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: creativeml-openrail-m
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - pt
9
+ - hi
10
+ - es
11
+ - th
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - triangulum_10b
15
+ - sft
16
+ - chain_of_thought
17
+ - ollama
18
+ - text-generation-inference
19
+ - llama_for_causal_lm
20
+ - reasoning
21
+ - CoT
22
+ library_name: transformers
23
+ metrics:
24
+ - code_eval
25
+ - accuracy
26
+ - competition_math
27
+ - character
28
+ ---
29
+ ![Triangulum-10b.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/By0OJ1lMvP5ZvVvfEGvz5.png)
30
+
31
+ <pre align="center">
32
+ __ .__ .__
33
+ _/ |_ _______ |__|_____ ____ ____ __ __ | | __ __ _____
34
+ \ __\\_ __ \| |\__ \ / \ / ___\ | | \| | | | \ / \
35
+ | | | | \/| | / __ \_| | \/ /_/ >| | /| |__| | /| Y Y \
36
+ |__| |__| |__|(____ /|___| /\___ / |____/ |____/|____/ |__|_| /
37
+ \/ \//_____/ \/
38
+ </pre>
39
+
40
+ # **Triangulum 10B FT: Multilingual Large Language Models (LLMs)**
41
+
42
+ Triangulum 10B FT is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively.
43
+
44
+ # **Key Features**
45
+
46
+ - **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance.
47
+
48
+ - **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety.
49
+
50
+ - **Multilingual Support**: Designed to handle multiple languages, ensuring broad applicability across diverse linguistic contexts.
51
+
52
+ # **Training Approach**
53
+
54
+ 1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities.
55
+ 2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets.
56
+ 3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes.
57
+
58
+ # **How to use with transformers**
59
+
60
+ Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
61
+
62
+ Make sure to update your transformers installation via `pip install --upgrade transformers`.
63
+
64
+ ```python
65
+ import torch
66
+ from transformers import pipeline
67
+
68
+ model_id = "prithivMLmods/Triangulum-10B"
69
+ pipe = pipeline(
70
+ "text-generation",
71
+ model=model_id,
72
+ torch_dtype=torch.bfloat16,
73
+ device_map="auto",
74
+ )
75
+ messages = [
76
+ {"role": "system", "content": "You are the kind and tri-intelligent assistant helping people to understand complex concepts."},
77
+ {"role": "user", "content": "Who are you?"},
78
+ ]
79
+ outputs = pipe(
80
+ messages,
81
+ max_new_tokens=256,
82
+ )
83
+ print(outputs[0]["generated_text"][-1])
84
+ ```
85
+ # **Demo Inference LlamaForCausalLM**
86
+ ```python
87
+ import torch
88
+ from transformers import AutoTokenizer, LlamaForCausalLM
89
+
90
+ # Load tokenizer and model
91
+ tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Triangulum-10B', trust_remote_code=True)
92
+ model = LlamaForCausalLM.from_pretrained(
93
+ "prithivMLmods/Triangulum-10B",
94
+ torch_dtype=torch.float16,
95
+ device_map="auto",
96
+ load_in_8bit=False,
97
+ load_in_4bit=True,
98
+ use_flash_attention_2=True
99
+ )
100
+
101
+ # Define a list of system and user prompts
102
+ prompts = [
103
+ """<|im_start|>system
104
+ You are the kind and tri-intelligent assistant helping people to understand complex concepts.<|im_end|>
105
+ <|im_start|>user
106
+ Can you explain the concept of eigenvalues and eigenvectors in a simple way?<|im_end|>
107
+ <|im_start|>assistant"""
108
+ ]
109
+
110
+ # Generate responses for each prompt
111
+ for chat in prompts:
112
+ print(f"Prompt:\n{chat}\n")
113
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
114
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
115
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
116
+ print(f"Response:\n{response}\n{'-'*80}\n")
117
+ ```
118
+
119
+ # **Key Adjustments**
120
+ 1. **System Prompts:** Each prompt defines a different role or persona for the AI to adopt.
121
+ 2. **User Prompts:** These specify the context or task for the assistant, ranging from teaching to storytelling or career advice.
122
+ 3. **Looping Through Prompts:** Each prompt is processed in a loop to showcase the model's versatility.
123
+
124
+ You can expand the list of prompts to explore a variety of scenarios and responses.
125
+ # **Use Cases for T10B**
126
+
127
+ - Multilingual content generation
128
+ - Question answering and dialogue systems
129
+ - Text summarization and analysis
130
+ - Translation and localization tasks
131
+
132
+ # **Technical Details**
133
+
134
+ Triangulum 10B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases.
135
+
136
+ # **How to Run Triangulum 10B on Ollama Locally**
137
+
138
+ ```markdown
139
+ # How to Run Ollama Locally
140
+
141
+ This guide demonstrates the power of using open-source LLMs locally, showcasing examples with different open-source models for various use cases. By the end, you'll be equipped to run any future open-source LLM models with ease.
142
+
143
+ ---
144
+
145
+ ## Example 1: How to Run the Triangulum-10B Model
146
+
147
+ The **Triangulum-10B** model is an open-source LLM known for its capabilities across text-based tasks. We'll interact with it similarly to ChatGPT, but run it locally with support for quants.
148
+
149
+ ### Step 1: Download the Model
150
+
151
+ First, download the **Triangulum-10B-F16.gguf** model using the following command:
152
+
153
+ ```bash
154
+ ollama run triangulum-10b-f16.gguf
155
+ ```
156
+
157
+ ### Step 2: Model Initialization and Download
158
+
159
+ Upon running the command, Ollama will initialize and download the model files. You should see output similar to the following:
160
+
161
+ ```plaintext
162
+ pulling manifest
163
+ pulling 8934d96d3f08... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 3.8 GB
164
+ pulling 8c17c2ebb0ea... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 7.0 KB
165
+ pulling 7c23fb36d801... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 4.8 KB
166
+ pulling 2e0493f67d0c... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 59 B
167
+ pulling fa304d675061... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 91 B
168
+ pulling 42ba7f8a01dd... 100% β–•β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– 557 B
169
+ verifying sha256 digest
170
+ writing manifest
171
+ removing any unused layers
172
+ success
173
+ >>> Send a message (/? for help)
174
+ ```
175
+
176
+ ### Step 3: Interact with the Model
177
+
178
+ Once the model is ready, you can send a prompt. For example, let's ask:
179
+
180
+ ```plaintext
181
+ >>> What can you do for me?
182
+ ```
183
+
184
+ If you asked the same question, you should receive a response like this:
185
+
186
+ ```plaintext
187
+ As a responsible AI language model, I am here to assist you with any questions or tasks you may have. Here are some examples of things I can help with:
188
+
189
+ 1. Answering questions: I can provide information on a wide range of topics, from science and technology to history and culture.
190
+ 2. Generating ideas: I can help you brainstorm ideas for creative projects, or provide suggestions for solving problems.
191
+ 3. Writing assistance: I can help you with writing tasks such as proofreading, editing, and suggesting alternative words or phrases.
192
+ 4. Translation: I can translate text from one language to another.
193
+ 5. Summarizing content: I can summarize long pieces of text, such as articles or documents, into shorter, more digestible versions.
194
+ 6. Creativity: I can help you generate creative ideas for stories, poems, or other forms of writing.
195
+ 7. Language learning: I can assist you in learning a new language by providing grammar explanations, vocabulary lists, and practice exercises.
196
+ 8. Chatting: I'm here to chat with you and provide a response to any question or topic you'd like to discuss.
197
+
198
+ Please let me know if there is anything specific you would like me to help you with.
199
+ ```
200
+
201
+ ### Step 4: Exit the Program
202
+
203
+ To exit the program, simply type:
204
+
205
+ ```plaintext
206
+ /exit
207
+ ```
208
+
209
+ ## Example 2: Running Multi-Modal Models (Future Use)
210
+
211
+ Ollama supports running multi-modal models where you can send images and ask questions based on them. This section will be updated as more models become available.
212
+
213
+ ## Notes on Using Quantized Models
214
+
215
+ Quantized models like **triangulum-10b-f16.gguf** are optimized for performance on resource-constrained hardware, making it accessible for local inference.
216
+
217
+ 1. Ensure your system has sufficient VRAM or CPU resources.
218
+ 2. Use the `.gguf` model format for compatibility with Ollama.
219
+
220
+ # **Conclusion**
221
+
222
+ Running the **Triangulum-10B** model with Ollama provides a robust way to leverage open-source LLMs locally for diverse use cases. By following these steps, you can explore the capabilities of other open-source models in the future.