license: apache-2.0
Paper: Adapting Language Models to Compress Contexts
Code: https://github.com/princeton-nlp/AutoCompressors
Models:
- Llama-2-7b fine-tuned models: AutoCompressor-Llama-2-7b-6k, FullAttention-Llama-2-7b-6k
- OPT-2.7b fine-tuned models: AutoCompressor-2.7b-6k, AutoCompressor-2.7b-30k, RMT-2.7b-8k
- OPT-1.3b fine-tuned models: AutoCompressor-1.3b-30k, RMT-1.3b-30k
AutoCompressor-Llama-2-7b-6k is a model fine-tuned from meta-llama/Llama-2-7b-hf following the AutoCompressor method in Adapting Language Models to Compress Contexts. This model is fine-tuned on 15B tokens from RedPajama dataset. The pre-trained Llama-2 model is fine-tuned on sequences of 6,144 tokens with 50 summary vectors, summary accumulation, randomized segmenting, and stop-gradients.
To get started, download the AutoCompressor
repository and load the model as follows:
from auto_compressor_llama import LlamaAutoCompressorModel
model = LlamaAutoCompressorModel.from_pretrained("princeton-nlp/AutoCompressor-Llama-2-7b-6k")
Evaluation
We record the perplexity achieved by our Llama-2-7B models on segments of 2048 tokens, conditioned on different amounts of context. FullAttention-Llama-2-7b-6k uses full uncompressed contexts whereas AutoCompressor-Llama-2-7b-6k compresses segments of 2048 tokens into 50 summary vectors.
Context Tokens | 0 | 512 | 2048 | 4096 | 6144 |
---|---|---|---|---|---|
Pre-trained Llama-2-7b | 5.52 | 5.15 | 4.98 | - | - |
FullAttention-Llama-2-7b-6k | 5.40 | 5.06 | 4.88 | 4.80 | 4.76 |
AutoCompressor-Llama-2-7b-6k | 5.40 | 5.16 | 5.11 | 5.08 | 5.07 |
See Adapting Language Models to Compress Contexts for more evaluations, including evaluation on 11 in-context learning tasks.
Bibtex
@misc{chevalier2023adapting,
title={Adapting Language Models to Compress Contexts},
author={Alexis Chevalier and Alexander Wettig and Anirudh Ajith and Danqi Chen},
year={2023},
eprint={2305.14788},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 683