|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
inference: false |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
Generates possible search queries for a given product with title and dedscription. Can be used to synthetically generate search queries. |
|
|
|
Input -> "Title: " + 《product_title》 + "Description: " + 《product_details》 |
|
|
|
## Development details |
|
Model is trained with a novel adversarial Generator-Retriever framework. |
|
|
|
The details of the framework can be found [here](https://github.com/PraveenSH/adversarial-generator-retriever/blob/main/README.md). |
|
Notebook with the code is available [here](https://github.com/PraveenSH/adversarial-generator-retriever/blob/main/generator_retriever.ipynb) |
|
|
|
## Using the model |
|
```python |
|
from transformers import T5ForConditionalGeneration, T5Tokenizer |
|
import torch |
|
|
|
MODEL_ID = "prhegde/search-query-generator-ecommerce" |
|
gen_tokenizer = T5Tokenizer.from_pretrained(MODEL_ID) |
|
gen_model = T5ForConditionalGeneration.from_pretrained(MODEL_ID) |
|
|
|
gen_model.eval() |
|
|
|
prod_title = "home sweet home pine pallet wall décor" |
|
prod_desc = "decorate your home with this rustic wood , which is made from high-quality pine pallets . this creates a beautiful rustic look for the kitchen , bedroom , or living room — great gift idea for any occasion ; perfect for holidays , birthdays , or game days" |
|
input_sequence = "Title: " + prod_title + " - Description: " + prod_desc |
|
|
|
input_ids = gen_tokenizer(input_sequence, return_tensors="pt").input_ids |
|
print(f'Input: {input_sequence}') |
|
|
|
nsent = 4 |
|
with torch.no_grad(): |
|
for i in range(nsent): |
|
output = gen_model.generate(input_ids, max_length=35, num_beams=1, do_sample=True, repetition_penalty=1.8) |
|
|
|
target_sequence = gen_tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(f'Target: {target_sequence}') |
|
|