audio_classification_model
This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 2.6376
- Accuracy: 0.0711
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8 | 3 | 2.6419 | 0.0778 |
No log | 1.87 | 7 | 2.6382 | 0.08 |
2.6463 | 2.93 | 11 | 2.6435 | 0.08 |
2.6463 | 4.0 | 15 | 2.6398 | 0.0778 |
2.6463 | 4.8 | 18 | 2.6386 | 0.0711 |
2.6474 | 5.87 | 22 | 2.6382 | 0.0711 |
2.6474 | 6.93 | 26 | 2.6375 | 0.0711 |
2.6424 | 8.0 | 30 | 2.6376 | 0.0711 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
- Downloads last month
- 162
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for pratap18/audio_classification_model
Base model
facebook/wav2vec2-base