|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Implements the OKVQA dataset for TFDS. |
|
|
|
Download the required files from https://aokvqa.allenai.org/download.html: |
|
|
|
mkdir -p /tmp/tfds |
|
cd /tmp/tfds/ |
|
wget http://images.cocodataset.org/zips/train2017.zip |
|
wget http://images.cocodataset.org/zips/val2017.zip |
|
wget http://images.cocodataset.org/zips/test2017.zip |
|
wget https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz |
|
unzip val2017.zip |
|
unzip train2017.zip |
|
unzip test2017.zip |
|
tar xzf aokvqa_v1p0.tar.gz |
|
|
|
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util): |
|
|
|
cd big_vision/datasets |
|
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=aokvqa |
|
|
|
Example to load: |
|
|
|
import tensorflow_datasets as tfds |
|
dataset = tfds.load('aokvqa', split='val', data_dir='/tmp/tfds') |
|
""" |
|
|
|
import json |
|
import os |
|
from typing import Any |
|
import numpy as np |
|
import tensorflow_datasets as tfds |
|
|
|
_DESCRIPTION = """ |
|
A-OKVQA addresses the task of VQA with outside knowledge. |
|
It is a follow-up dataset of OKVQA. |
|
|
|
This version of the dataset contains: |
|
- Questions + Answers + Multiple Choice Answers + Rationales from A-OKVQA. |
|
- Images from COCO. |
|
""" |
|
|
|
_CITATION = """ |
|
@article{AOKVQA, |
|
title={A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge}, |
|
author={Dustin Schwenk and Apoorv Khandelwal and Christopher Clark and Kenneth Marino and Roozbeh Mottaghi}, |
|
journal={arXiv}, |
|
year={2022}, |
|
} |
|
""" |
|
|
|
ANNOTATION_FILES = { |
|
'train': 'aokvqa_v1p0_train.json', |
|
'val': 'aokvqa_v1p0_val.json', |
|
'test': 'aokvqa_v1p0_test.json', |
|
} |
|
|
|
|
|
|
|
_AOKVQA_PATH = '/tmp/tfds' |
|
|
|
|
|
class AOkVqa(tfds.core.GeneratorBasedBuilder): |
|
"""AOKVQA dataset for TFDS.""" |
|
|
|
VERSION = tfds.core.Version('1.0.0') |
|
RELEASE_NOTES = {'1.0.0': 'ArrayRecord version.'} |
|
MANUAL_DOWNLOAD_INSTRUCTIONS = """ |
|
In manual_dir/ you should have a directory a_ok_vqa which contains the |
|
following files and directories: |
|
From the A-OKVQA dataset: |
|
- aokvqa_v1p0_train.json |
|
- aokvqa_v1p0_val.json |
|
- aokvqa_v1p0_test.json |
|
It also requires the COCO data files. |
|
""" |
|
|
|
def _info(self) -> tfds.core.DatasetInfo: |
|
"""Returns the dataset metadata.""" |
|
features = tfds.features.FeaturesDict({ |
|
'image': tfds.features.Image(shape=(None, None, 3)), |
|
'image_id': tfds.features.Scalar(dtype=np.int64), |
|
'direct_answers': tfds.features.Sequence(tfds.features.Text()), |
|
'direct_answer_is_difficult': tfds.features.Scalar(dtype=np.bool_), |
|
'multiple_choice_possible_answers': |
|
tfds.features.Sequence(tfds.features.Text()), |
|
'multiple_choice_correct_idx': |
|
tfds.features.Scalar(dtype=np.int32), |
|
'answer_rationales': tfds.features.Sequence(tfds.features.Text()), |
|
'question': tfds.features.Text(), |
|
'question_id': tfds.features.Text(), |
|
}) |
|
|
|
return tfds.core.DatasetInfo( |
|
builder=self, |
|
features=features, |
|
description=_DESCRIPTION, |
|
supervised_keys=None, |
|
homepage='https://okvqa.allenai.org/', |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: tfds.download.DownloadManager) -> ...: |
|
"""Call the function which defines the splits.""" |
|
|
|
data_dir = _AOKVQA_PATH |
|
return { |
|
'train': self._generate_examples(data_dir, 'train'), |
|
'val': self._generate_examples(data_dir, 'val'), |
|
'test': self._generate_examples(data_dir, 'test'), |
|
} |
|
|
|
def _generate_examples(self, data_dir: str, split: str) -> ...: |
|
annotations = get_annotations(data_dir, split) |
|
|
|
for question_id, feature_dict in annotations.items(): |
|
image_id = feature_dict['image_id'] |
|
|
|
|
|
feature_dict['image'] = self.get_image_path(data_dir, split, image_id) |
|
|
|
|
|
if split not in ['train', 'val']: |
|
assert split == 'test', f'Unknown split: {split}' |
|
feature_dict['multiple_choice_correct_idx'] = -1 |
|
feature_dict['direct_answers'] = [] |
|
feature_dict['answer_rationales'] = [] |
|
yield f'{question_id}', feature_dict |
|
|
|
def get_image_path(self, data_dir: str, split: str, image_id: int) -> str: |
|
return f'{data_dir}/{split}2017/{image_id:012d}.jpg' |
|
|
|
|
|
def get_annotations( |
|
data_dir: str, split: str) -> dict[int, dict[str, Any]]: |
|
"""Return okvqa annotations (quesions and answers) as dictionary.""" |
|
path = os.path.join(data_dir, ANNOTATION_FILES[split]) |
|
with open(path) as f: |
|
annotations = json.load(f) |
|
|
|
aokvqa_annotations = {} |
|
for annotation in annotations: |
|
|
|
assert len(annotation['choices']) == 4 |
|
|
|
question_id = annotation['question_id'] |
|
|
|
aokvqa_annotations[question_id] = { |
|
'image_id': annotation['image_id'], |
|
'direct_answer_is_difficult': annotation['difficult_direct_answer'], |
|
'multiple_choice_possible_answers': annotation['choices'], |
|
'question': annotation['question'], |
|
'question_id': annotation['question_id'], |
|
} |
|
|
|
|
|
if split in ['train', 'val']: |
|
assert len(annotation['direct_answers']) == 10 |
|
assert len(annotation['rationales']) == 3 |
|
|
|
aokvqa_annotations[question_id]['direct_answers'] = annotation[ |
|
'direct_answers'] |
|
aokvqa_annotations[question_id]['answer_rationales'] = annotation[ |
|
'rationales'] |
|
aokvqa_annotations[question_id]['multiple_choice_correct_idx'] = ( |
|
annotation['correct_choice_idx']) |
|
|
|
return aokvqa_annotations |
|
|