File size: 6,328 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Implements the OKVQA dataset for TFDS.

Download the required files from https://aokvqa.allenai.org/download.html:

mkdir -p /tmp/tfds
cd /tmp/tfds/
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/test2017.zip
wget https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz
unzip val2017.zip
unzip train2017.zip
unzip test2017.zip
tar xzf aokvqa_v1p0.tar.gz

Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):

  cd big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=aokvqa

Example to load:

  import tensorflow_datasets as tfds
  dataset = tfds.load('aokvqa', split='val', data_dir='/tmp/tfds')
"""

import json
import os
from typing import Any
import numpy as np
import tensorflow_datasets as tfds

_DESCRIPTION = """
A-OKVQA addresses the task of VQA with outside knowledge.
It is a follow-up dataset of OKVQA.

This version of the dataset contains:
- Questions + Answers + Multiple Choice Answers + Rationales from A-OKVQA.
- Images from COCO.
"""

_CITATION = """
@article{AOKVQA,
  title={A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge},
  author={Dustin Schwenk and Apoorv Khandelwal and Christopher Clark and Kenneth Marino and Roozbeh Mottaghi},
  journal={arXiv},
  year={2022},
}
"""

ANNOTATION_FILES = {
    'train': 'aokvqa_v1p0_train.json',
    'val': 'aokvqa_v1p0_val.json',
    'test': 'aokvqa_v1p0_test.json',
}


# When running locally (recommended), copy files as above an use these:
_AOKVQA_PATH = '/tmp/tfds'


class AOkVqa(tfds.core.GeneratorBasedBuilder):
  """AOKVQA dataset for TFDS."""

  VERSION = tfds.core.Version('1.0.0')
  RELEASE_NOTES = {'1.0.0': 'ArrayRecord version.'}
  MANUAL_DOWNLOAD_INSTRUCTIONS = """
  In manual_dir/ you should have a directory a_ok_vqa which contains the
  following files and directories:
  From the A-OKVQA dataset:
  - aokvqa_v1p0_train.json
  - aokvqa_v1p0_val.json
  - aokvqa_v1p0_test.json
  It also requires the COCO data files.
  """

  def _info(self) -> tfds.core.DatasetInfo:
    """Returns the dataset metadata."""
    features = tfds.features.FeaturesDict({
        'image': tfds.features.Image(shape=(None, None, 3)),
        'image_id': tfds.features.Scalar(dtype=np.int64),
        'direct_answers': tfds.features.Sequence(tfds.features.Text()),
        'direct_answer_is_difficult': tfds.features.Scalar(dtype=np.bool_),
        'multiple_choice_possible_answers':  # List of 4 possible answers.
            tfds.features.Sequence(tfds.features.Text()),
        'multiple_choice_correct_idx':  # Integer from 0-3.
            tfds.features.Scalar(dtype=np.int32),
        'answer_rationales': tfds.features.Sequence(tfds.features.Text()),
        'question': tfds.features.Text(),
        'question_id': tfds.features.Text(),
    })

    return tfds.core.DatasetInfo(
        builder=self,
        features=features,
        description=_DESCRIPTION,
        supervised_keys=None,
        homepage='https://okvqa.allenai.org/',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager) -> ...:
    """Call the function which defines the splits."""
    # data_dir = dl_manager.manual_dir
    data_dir = _AOKVQA_PATH
    return {
        'train': self._generate_examples(data_dir, 'train'),
        'val': self._generate_examples(data_dir, 'val'),
        'test': self._generate_examples(data_dir, 'test'),
    }

  def _generate_examples(self, data_dir: str, split: str) -> ...:
    annotations = get_annotations(data_dir, split)

    for question_id, feature_dict in annotations.items():
      image_id = feature_dict['image_id']

      # Add image and GT segmentatio labels from total_transfer.
      feature_dict['image'] = self.get_image_path(data_dir, split, image_id)

      # Add dummy features for several features in the test set.
      if split not in ['train', 'val']:
        assert split == 'test', f'Unknown split: {split}'
        feature_dict['multiple_choice_correct_idx'] = -1
        feature_dict['direct_answers'] = []
        feature_dict['answer_rationales'] = []
      yield f'{question_id}', feature_dict

  def get_image_path(self, data_dir: str, split: str, image_id: int) -> str:
    return f'{data_dir}/{split}2017/{image_id:012d}.jpg'


def get_annotations(
    data_dir: str, split: str) -> dict[int, dict[str, Any]]:
  """Return okvqa annotations (quesions and answers) as dictionary."""
  path = os.path.join(data_dir, ANNOTATION_FILES[split])
  with open(path) as f:
    annotations = json.load(f)

  aokvqa_annotations = {}
  for annotation in annotations:
    # Sanity checks
    assert len(annotation['choices']) == 4

    question_id = annotation['question_id']

    aokvqa_annotations[question_id] = {
        'image_id': annotation['image_id'],
        'direct_answer_is_difficult': annotation['difficult_direct_answer'],
        'multiple_choice_possible_answers': annotation['choices'],
        'question': annotation['question'],
        'question_id': annotation['question_id'],
    }

    # Get answers and rationales for train and val only, not for test.
    if split in ['train', 'val']:
      assert len(annotation['direct_answers']) == 10
      assert len(annotation['rationales']) == 3

      aokvqa_annotations[question_id]['direct_answers'] = annotation[
          'direct_answers']
      aokvqa_annotations[question_id]['answer_rationales'] = annotation[
          'rationales']
      aokvqa_annotations[question_id]['multiple_choice_correct_idx'] = (
          annotation['correct_choice_idx'])

  return aokvqa_annotations