File size: 6,328 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Implements the OKVQA dataset for TFDS.
Download the required files from https://aokvqa.allenai.org/download.html:
mkdir -p /tmp/tfds
cd /tmp/tfds/
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/test2017.zip
wget https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz
unzip val2017.zip
unzip train2017.zip
unzip test2017.zip
tar xzf aokvqa_v1p0.tar.gz
Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):
cd big_vision/datasets
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=aokvqa
Example to load:
import tensorflow_datasets as tfds
dataset = tfds.load('aokvqa', split='val', data_dir='/tmp/tfds')
"""
import json
import os
from typing import Any
import numpy as np
import tensorflow_datasets as tfds
_DESCRIPTION = """
A-OKVQA addresses the task of VQA with outside knowledge.
It is a follow-up dataset of OKVQA.
This version of the dataset contains:
- Questions + Answers + Multiple Choice Answers + Rationales from A-OKVQA.
- Images from COCO.
"""
_CITATION = """
@article{AOKVQA,
title={A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge},
author={Dustin Schwenk and Apoorv Khandelwal and Christopher Clark and Kenneth Marino and Roozbeh Mottaghi},
journal={arXiv},
year={2022},
}
"""
ANNOTATION_FILES = {
'train': 'aokvqa_v1p0_train.json',
'val': 'aokvqa_v1p0_val.json',
'test': 'aokvqa_v1p0_test.json',
}
# When running locally (recommended), copy files as above an use these:
_AOKVQA_PATH = '/tmp/tfds'
class AOkVqa(tfds.core.GeneratorBasedBuilder):
"""AOKVQA dataset for TFDS."""
VERSION = tfds.core.Version('1.0.0')
RELEASE_NOTES = {'1.0.0': 'ArrayRecord version.'}
MANUAL_DOWNLOAD_INSTRUCTIONS = """
In manual_dir/ you should have a directory a_ok_vqa which contains the
following files and directories:
From the A-OKVQA dataset:
- aokvqa_v1p0_train.json
- aokvqa_v1p0_val.json
- aokvqa_v1p0_test.json
It also requires the COCO data files.
"""
def _info(self) -> tfds.core.DatasetInfo:
"""Returns the dataset metadata."""
features = tfds.features.FeaturesDict({
'image': tfds.features.Image(shape=(None, None, 3)),
'image_id': tfds.features.Scalar(dtype=np.int64),
'direct_answers': tfds.features.Sequence(tfds.features.Text()),
'direct_answer_is_difficult': tfds.features.Scalar(dtype=np.bool_),
'multiple_choice_possible_answers': # List of 4 possible answers.
tfds.features.Sequence(tfds.features.Text()),
'multiple_choice_correct_idx': # Integer from 0-3.
tfds.features.Scalar(dtype=np.int32),
'answer_rationales': tfds.features.Sequence(tfds.features.Text()),
'question': tfds.features.Text(),
'question_id': tfds.features.Text(),
})
return tfds.core.DatasetInfo(
builder=self,
features=features,
description=_DESCRIPTION,
supervised_keys=None,
homepage='https://okvqa.allenai.org/',
citation=_CITATION,
)
def _split_generators(self, dl_manager: tfds.download.DownloadManager) -> ...:
"""Call the function which defines the splits."""
# data_dir = dl_manager.manual_dir
data_dir = _AOKVQA_PATH
return {
'train': self._generate_examples(data_dir, 'train'),
'val': self._generate_examples(data_dir, 'val'),
'test': self._generate_examples(data_dir, 'test'),
}
def _generate_examples(self, data_dir: str, split: str) -> ...:
annotations = get_annotations(data_dir, split)
for question_id, feature_dict in annotations.items():
image_id = feature_dict['image_id']
# Add image and GT segmentatio labels from total_transfer.
feature_dict['image'] = self.get_image_path(data_dir, split, image_id)
# Add dummy features for several features in the test set.
if split not in ['train', 'val']:
assert split == 'test', f'Unknown split: {split}'
feature_dict['multiple_choice_correct_idx'] = -1
feature_dict['direct_answers'] = []
feature_dict['answer_rationales'] = []
yield f'{question_id}', feature_dict
def get_image_path(self, data_dir: str, split: str, image_id: int) -> str:
return f'{data_dir}/{split}2017/{image_id:012d}.jpg'
def get_annotations(
data_dir: str, split: str) -> dict[int, dict[str, Any]]:
"""Return okvqa annotations (quesions and answers) as dictionary."""
path = os.path.join(data_dir, ANNOTATION_FILES[split])
with open(path) as f:
annotations = json.load(f)
aokvqa_annotations = {}
for annotation in annotations:
# Sanity checks
assert len(annotation['choices']) == 4
question_id = annotation['question_id']
aokvqa_annotations[question_id] = {
'image_id': annotation['image_id'],
'direct_answer_is_difficult': annotation['difficult_direct_answer'],
'multiple_choice_possible_answers': annotation['choices'],
'question': annotation['question'],
'question_id': annotation['question_id'],
}
# Get answers and rationales for train and val only, not for test.
if split in ['train', 'val']:
assert len(annotation['direct_answers']) == 10
assert len(annotation['rationales']) == 3
aokvqa_annotations[question_id]['direct_answers'] = annotation[
'direct_answers']
aokvqa_annotations[question_id]['answer_rationales'] = annotation[
'rationales']
aokvqa_annotations[question_id]['multiple_choice_correct_idx'] = (
annotation['correct_choice_idx'])
return aokvqa_annotations
|