prakhardixit24's picture
End of training
98e2aed verified
|
raw
history blame
1.91 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: urinary_carcinoma_classifier_m_rs_50
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train[:18]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5

urinary_carcinoma_classifier_m_rs_50

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6941
  • Accuracy: 0.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6931 0.5
No log 2.0 2 0.6935 0.5
No log 3.0 3 0.6941 0.5

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1