prakhardixit24's picture
End of training
7f558f2 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: urinary_carcinoma_classifier_g
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train[:18]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

urinary_carcinoma_classifier_g

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1879
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6847 0.5
No log 2.0 2 0.6741 0.75
No log 3.0 3 0.6468 0.75
No log 4.0 4 0.6268 0.75
No log 5.0 5 0.6053 0.75
No log 6.0 6 0.5515 0.75
No log 7.0 7 0.5259 1.0
No log 8.0 8 0.4513 1.0
No log 9.0 9 0.4493 1.0
0.1427 10.0 10 0.3979 1.0
0.1427 11.0 11 0.4203 1.0
0.1427 12.0 12 0.3690 1.0
0.1427 13.0 13 0.2793 1.0
0.1427 14.0 14 0.3143 1.0
0.1427 15.0 15 0.2536 1.0
0.1427 16.0 16 0.2509 1.0
0.1427 17.0 17 0.2619 1.0
0.1427 18.0 18 0.2187 1.0
0.1427 19.0 19 0.3027 1.0
0.055 20.0 20 0.2662 1.0
0.055 21.0 21 0.3630 0.75
0.055 22.0 22 0.4297 0.75
0.055 23.0 23 0.3473 0.75
0.055 24.0 24 0.4058 0.75
0.055 25.0 25 0.3959 0.75
0.055 26.0 26 0.2548 1.0
0.055 27.0 27 0.1835 1.0
0.055 28.0 28 0.1909 1.0
0.055 29.0 29 0.4000 0.75
0.029 30.0 30 0.1879 1.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1