metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: hw4_mmcar25_classifier_iter.pkl
widget:
- structuredData:
Age:
- 35.35851182279478
- 39
- 34
Contract Length_Annual:
- 1
- 1
- 0.41739539170657025
Contract Length_Monthly:
- 0
- -9.588600988763574e-7
- 0
Contract Length_Quarterly:
- 0
- 0
- 0.5826040993874315
CustomerID:
- 385551
- 261335
- 153561.94905072325
Gender_Female:
- 0
- 1.000000010533829
- 8.715916877122254e-10
Gender_Male:
- 1.0000000007832854
- 0
- 1
Last Interaction:
- 20
- 9
- 12
Payment Delay:
- 19
- 7
- 14.520183163578832
Subscription Type_Basic:
- 1.00000007659523
- 1
- -1.5888031917876688e-7
Subscription Type_Premium:
- 0
- 0
- 0
Subscription Type_Standard:
- 0
- 0
- 1
Support Calls:
- 0
- 0
- 8
Tenure:
- 43
- 31
- 17
Total Spend:
- 914.15
- 657.3
- 511.21
Usage Frequency:
- 23
- 28
- 15.898805108896807
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
bootstrap | True |
ccp_alpha | 0.0 |
class_weight | |
criterion | gini |
max_depth | |
max_features | sqrt |
max_leaf_nodes | |
max_samples | |
min_impurity_decrease | 0.0 |
min_samples_leaf | 1 |
min_samples_split | 2 |
min_weight_fraction_leaf | 0.0 |
monotonic_cst | |
n_estimators | 100 |
n_jobs | |
oob_score | False |
random_state | 42 |
verbose | 0 |
warm_start | False |
Model Plot
RandomForestClassifier(random_state=42)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
RandomForestClassifier(random_state=42)
Evaluation Results
Metric | Value |
---|---|
f1 score | 0.980536 |
accuracy | 0.978034 |
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
eval_method
The model is evaluated using test split, on accuracy and f1.