Chananchida's picture
Model save
18a35eb
|
raw
history blame
3.82 kB
metadata
license: mit
base_model: timpal0l/mdeberta-v3-base-squad2
tags:
  - generated_from_trainer
model-index:
  - name: model1
    results: []

model1

This model is a fine-tuned version of timpal0l/mdeberta-v3-base-squad2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.2922909480977358e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
4.2146 0.0 10 4.1627
4.1667 0.0 20 3.9059
4.0555 0.01 30 3.7982
3.9331 0.01 40 3.7342
3.8012 0.01 50 3.6719
3.7713 0.01 60 3.6077
3.8391 0.02 70 3.5548
3.8842 0.02 80 3.5134
3.6894 0.02 90 3.4823
3.5359 0.02 100 3.4466
3.6247 0.03 110 3.4096
3.6347 0.03 120 3.3807
3.5752 0.03 130 3.3459
3.467 0.03 140 3.2778
3.6188 0.04 150 3.2198
3.444 0.04 160 3.1880
3.4635 0.04 170 3.1494
3.3998 0.04 180 3.1107
3.1465 0.04 190 3.0675
3.4321 0.05 200 3.0380
3.3174 0.05 210 3.0122
3.6018 0.05 220 2.9566
3.4178 0.05 230 2.9099
3.2037 0.06 240 2.8755
3.3974 0.06 250 2.8493
3.109 0.06 260 2.8209
3.1127 0.06 270 2.7751
3.2408 0.07 280 2.7458
3.274 0.07 290 2.7211
3.0695 0.07 300 2.6946
2.9757 0.07 310 2.6713
3.0846 0.08 320 2.6415
3.0576 0.08 330 2.6209
2.8623 0.08 340 2.6041
3.165 0.08 350 2.5913
2.8874 0.08 360 2.5797
3.046 0.09 370 2.5627
2.8727 0.09 380 2.5391
2.7942 0.09 390 2.5188
2.7494 0.09 400 2.5031
2.8419 0.1 410 2.4905
2.8411 0.1 420 2.4792
2.9188 0.1 430 2.4696
2.9239 0.1 440 2.4622
3.0064 0.11 450 2.4551
2.9781 0.11 460 2.4504
2.8582 0.11 470 2.4483
2.8701 0.11 480 2.4456
2.7012 0.12 490 2.4442
2.827 0.12 500 2.4437

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0