Chananchida
commited on
Commit
路
18a35eb
1
Parent(s):
f4f60e9
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: timpal0l/mdeberta-v3-base-squad2
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: model1
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# model1
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [timpal0l/mdeberta-v3-base-squad2](https://huggingface.co/timpal0l/mdeberta-v3-base-squad2) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.4437
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 1.2922909480977358e-06
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 4
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- training_steps: 500
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
49 |
+
| 4.2146 | 0.0 | 10 | 4.1627 |
|
50 |
+
| 4.1667 | 0.0 | 20 | 3.9059 |
|
51 |
+
| 4.0555 | 0.01 | 30 | 3.7982 |
|
52 |
+
| 3.9331 | 0.01 | 40 | 3.7342 |
|
53 |
+
| 3.8012 | 0.01 | 50 | 3.6719 |
|
54 |
+
| 3.7713 | 0.01 | 60 | 3.6077 |
|
55 |
+
| 3.8391 | 0.02 | 70 | 3.5548 |
|
56 |
+
| 3.8842 | 0.02 | 80 | 3.5134 |
|
57 |
+
| 3.6894 | 0.02 | 90 | 3.4823 |
|
58 |
+
| 3.5359 | 0.02 | 100 | 3.4466 |
|
59 |
+
| 3.6247 | 0.03 | 110 | 3.4096 |
|
60 |
+
| 3.6347 | 0.03 | 120 | 3.3807 |
|
61 |
+
| 3.5752 | 0.03 | 130 | 3.3459 |
|
62 |
+
| 3.467 | 0.03 | 140 | 3.2778 |
|
63 |
+
| 3.6188 | 0.04 | 150 | 3.2198 |
|
64 |
+
| 3.444 | 0.04 | 160 | 3.1880 |
|
65 |
+
| 3.4635 | 0.04 | 170 | 3.1494 |
|
66 |
+
| 3.3998 | 0.04 | 180 | 3.1107 |
|
67 |
+
| 3.1465 | 0.04 | 190 | 3.0675 |
|
68 |
+
| 3.4321 | 0.05 | 200 | 3.0380 |
|
69 |
+
| 3.3174 | 0.05 | 210 | 3.0122 |
|
70 |
+
| 3.6018 | 0.05 | 220 | 2.9566 |
|
71 |
+
| 3.4178 | 0.05 | 230 | 2.9099 |
|
72 |
+
| 3.2037 | 0.06 | 240 | 2.8755 |
|
73 |
+
| 3.3974 | 0.06 | 250 | 2.8493 |
|
74 |
+
| 3.109 | 0.06 | 260 | 2.8209 |
|
75 |
+
| 3.1127 | 0.06 | 270 | 2.7751 |
|
76 |
+
| 3.2408 | 0.07 | 280 | 2.7458 |
|
77 |
+
| 3.274 | 0.07 | 290 | 2.7211 |
|
78 |
+
| 3.0695 | 0.07 | 300 | 2.6946 |
|
79 |
+
| 2.9757 | 0.07 | 310 | 2.6713 |
|
80 |
+
| 3.0846 | 0.08 | 320 | 2.6415 |
|
81 |
+
| 3.0576 | 0.08 | 330 | 2.6209 |
|
82 |
+
| 2.8623 | 0.08 | 340 | 2.6041 |
|
83 |
+
| 3.165 | 0.08 | 350 | 2.5913 |
|
84 |
+
| 2.8874 | 0.08 | 360 | 2.5797 |
|
85 |
+
| 3.046 | 0.09 | 370 | 2.5627 |
|
86 |
+
| 2.8727 | 0.09 | 380 | 2.5391 |
|
87 |
+
| 2.7942 | 0.09 | 390 | 2.5188 |
|
88 |
+
| 2.7494 | 0.09 | 400 | 2.5031 |
|
89 |
+
| 2.8419 | 0.1 | 410 | 2.4905 |
|
90 |
+
| 2.8411 | 0.1 | 420 | 2.4792 |
|
91 |
+
| 2.9188 | 0.1 | 430 | 2.4696 |
|
92 |
+
| 2.9239 | 0.1 | 440 | 2.4622 |
|
93 |
+
| 3.0064 | 0.11 | 450 | 2.4551 |
|
94 |
+
| 2.9781 | 0.11 | 460 | 2.4504 |
|
95 |
+
| 2.8582 | 0.11 | 470 | 2.4483 |
|
96 |
+
| 2.8701 | 0.11 | 480 | 2.4456 |
|
97 |
+
| 2.7012 | 0.12 | 490 | 2.4442 |
|
98 |
+
| 2.827 | 0.12 | 500 | 2.4437 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.35.2
|
104 |
+
- Pytorch 2.1.0+cu121
|
105 |
+
- Datasets 2.15.0
|
106 |
+
- Tokenizers 0.15.0
|