|
--- |
|
license: apache-2.0 |
|
language: |
|
- es |
|
tags: |
|
- generated_from_trainer |
|
- robust-speech-event |
|
- common_voice_8_0 |
|
- mozilla-foundation/common_voice_8_0 |
|
|
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: wave2vec-xls-r-300m-es |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_8_0 es |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: es |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 14.38 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-300m-es with n-gram(5) |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss (Test): 0.1900 |
|
- Wer (Test): 0.1438 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3.6747 | 0.3 | 400 | 0.6535 | 0.5926 | |
|
| 0.4439 | 0.6 | 800 | 0.3753 | 0.3193 | |
|
| 0.3291 | 0.9 | 1200 | 0.3267 | 0.2721 | |
|
| 0.2644 | 1.2 | 1600 | 0.2816 | 0.2311 | |
|
| 0.24 | 1.5 | 2000 | 0.2647 | 0.2179 | |
|
| 0.2265 | 1.79 | 2400 | 0.2406 | 0.2048 | |
|
| 0.1994 | 2.09 | 2800 | 0.2357 | 0.1869 | |
|
| 0.1613 | 2.39 | 3200 | 0.2242 | 0.1821 | |
|
| 0.1546 | 2.69 | 3600 | 0.2123 | 0.1707 | |
|
| 0.1441 | 2.99 | 4000 | 0.2067 | 0.1619 | |
|
| 0.1138 | 3.29 | 4400 | 0.2044 | 0.1519 | |
|
| 0.1072 | 3.59 | 4800 | 0.1917 | 0.1457 | |
|
| 0.0992 | 3.89 | 5200 | 0.1900 | 0.1438 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.17.1.dev0 |
|
- Tokenizers 0.11.0 |
|
|