File size: 2,357 Bytes
c9ae4be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a3252
 
 
 
 
 
 
1a3fa88
7e034dc
18efbd1
1a94f31
c9ae4be
45da127
c9ae4be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aba7d7
936060b
 
d035825
1642e3d
 
55e47ee
1642e3d
 
3ab04d5
2aba7d7
e8a48f7
0d82a78
92cfca3
 
55a553a
936060b
2aba7d7
936060b
1c8ae47
 
2aba7d7
1c8ae47
2aba7d7
1c8ae47
 
2aba7d7
55a553a
2aba7d7
19b367a
9588289
c9ae4be
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
tags:
- spacy
- token-classification
language:
- en
license: mit
model-index:
- name: en_biobert_ner_symptom
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.9997017596
    - name: NER Recall
      type: recall
      value: 0.9994036971
    - name: NER F Score
      type: f_score
      value: 0.9995527061
widget:
- text: "Patient X reported coughing and sneezing."
  example_title: "Example 1"
- text: "There was a case of rash and inflammation."
  example_title: "Example 2"
- text: "He complained of dizziness during the trip."
  example_title: "Example 3"
- text: "I felt distressed , giddy and nauseous during my stay in Florida."
  example_title: "Example 4"
- text: "Mr. Y complained of breathlessness and chest pain when he was driving back to his house."
  example_title: "Example 5"
---
Fine-tuned BioBERT based NER model for detecting medical symptoms from clinical notes.

| Feature | Description |
| --- | --- |
| **Name** | `en_biobert_ner_symptom` |
| **Version** | `1.0.0` |
| **spaCy** | `>=3.5.1,<3.6.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | `MIT` |
| **Author** | [Sena Chae, Pratik Maitra, Padmini Srinivasan]() |



## Model Description 

The model was trained on a combined maccrobat and i2c2 dataset and is based on biobert. If you use this model kindly cite the paper below:

<b>
<i>  
Uncovering Hidden Symptom Clusters in Patients with Acute Myeloid Leukemia using Natural Language Processing - Sena Chae, Jaewon Bae , Pratik Matira, Karen Dunn Lopez, Barbara Rakel
</i>
</b>

## Model Usage
The model can be loaded using spacy after installing the model. 
```
!pip install https://huggingface.co/pmaitra/en_biobert_ner_symptom/resolve/main/en_biobert_ner_symptom-any-py3-none-any.whl
```
A sample use-case is presented below:

```python

import spacy
nlp = spacy.load("en_biobert_ner_symptom")

doc = nlp("He complained of dizziness and nausea during the Iowa trip.")

for ent in doc.ents:
  print(ent)


```


### Accuracy

| Type | Score |
| --- | --- |
| `ENTS_F` | 99.96 |
| `ENTS_P` | 99.97 |
| `ENTS_R` | 99.94 |
| `TRANSFORMER_LOSS` | 20456.83 |
| `NER_LOSS` | 38920.06 |